• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la rupture ductile d'un acier à très haute résistance pour des applications aéronautiques / Ductile failure of an ultra hight strength steel for aeronautical applications

Defaisse, Clément 01 June 2018 (has links)
Les pièces des structures aéronautiques telles que les arbres des turboréacteurs, les roues, les freins ou les trains d’atterrissage sont fabriquées avec des aciers à très haute résistance. Leur structure martensitique, renforcée par des précipités de taille inférieure au micromètre, confère à ces aciers une excellente résistance : leur limite d'élasticité peut dépasser les 1900 MPa et leur résistance mécanique atteindre les 2300 MPa. Ces matériaux sont choisis pour ces excellentes propriétés mécaniques sur la base de leur comportement en traction. Toutefois, leur déformation à striction (maximum de la charge) est de quelques pourcents seulement. Les méthodes de dimensionnement sous chargement critique actuelles considèrent qu’aucun point de la structure ne doit être soumis à une déformation supérieure à la déformation à striction. Ce type d’approche est ici très conservatrice puisque les aciers THR continuent de se déformer plastiquement, ceci jusqu’à plusieurs dizaines de pourcent après le début de la striction. L’objet de ces travaux est de définir un modèle d’amorçage de la rupture applicable au dimensionnement de ces structures pour un acier type : le ML340. Ce matériau est actuellement utilisé dans les arbres de turboréacteur LEAP.Le comportement élasto-plastique du matériau a été étudié grâce à des essais menés sur différents types d’éprouvettes : tractions lisses, axisymétriques entaillées, déformation plane, plates entaillées, traction-torsion. Un modèle simple de von Mises à écrouissage isotrope permet de reproduire l’ensemble de la base. Ce modèle est ajusté sur les essais de traction pour lesquels un suivi optique de la variation du diamètre minium a été mis en place. La loi d’ ́écrouissage est ensuite ajustée en prenant en compte à la fois l'élongation et la variation du diamètre. On montre en particulier que l'extrapolation du comportement, méthode consistant à prolonger les données obtenues avant l'apparition de la striction, peut conduire à une mauvaise prédiction du comportement des éprouvettes.La base expérimentale a également été employée pour étudier l’amorçage de la rupture. L’observation des faciès montre un mode de rupture ductile avec des cupules fines. Cependant, l'initiation est brutale pour tous les essais et le développement de l’endommagement en volume reste très limité, voire nul. Ces constatations conduisent à proposer l’emploi d’un critère d’amorçage découplé : ce modèle fait intervenir la triaxialité des contraintes et le paramètre de Lode. Cette double dépendance est nécessaire pour bien décrire la rupture sur toute la base expérimentale. L’identification des paramètres du modèle se base sur l'évaluation des champs mécaniques à partir des simulations élasto-plastiques par éléments finis représentant les essais. Le modèle est également capable de prédire les emplacements des points d’amorçages observés, ces informations peuvent être utilisées pour ajuster plus finement le modèle. / Aeronautical structures such as jet engines shafts, wheels, brakes or landing gears are made of Ultra High Strenth Steels (UHSS). Due to their hard martensitic matrix reinforced with second phase particles, such steels exhibit extreme mechanical resistance, their yield strength can overcome 1900 MPa and their ultimate tensile strength can reach 2300 MPa. Such materials are selected based on their tensile properties, however strain at necking (maximum load) is only few percent. Conventional certified design methods assume that failure occurs when a given point of the structure reaches this strain. Regarding UHSS this approach is very conservative; those materials are still able to bear large strains after necking start. The aim of this work is to define a failure initiation model able to predict ductile failure of such structures for extremes loadings. The ML340 steel, material of LEAP jet-engine shafts, have been selected for this study.Elasto-plastic behavior is investigated with various mechanical tests. Uniaxial tensile test were performed on round bars specimens, either smooth or notch, and flat specimens, either u notched or plane strain. Traction/torsion and compression/torsion biaxial tests were performed on tubes specimens. A simple isotropic von Mises plasticity model was found sufficient to describe mechanical behavior of this experimental database. This model was calibrated based on round smooth tensile tests, a longitudinal extensometer and a non contact method, measuring diameter reduction, were used in order to monitor strains. Hardening law was adjust with both sets of data using a reverse method, hence material striction is take into account during the identification. Identification method extrapolating plastic behavior based on tensile data measured before the striction begining is shown to overperdict plastic behavior.Failure initiation was also investigated through fracture tests. Every fractography display very fine dimples related to ductile fracture, however fracture apears to be very brutal and very few damage was observed underneath fracture surface. As a result an uncoupled fracture initiation model is proposed, damage indicator is driven by both stress triaxiality and a Lode parameter. This dual dependency is necessary in order to represent fracture for the whole database. Model parameters identification relies on the evaluation of local stress state for each test, this could be achieved with 3D elasto-plastic simulations. As a result fracture model was able to predict correct fracture initiation point positions observed on round tensile tests and flat u notch tests.
2

Comportement mécanique du superalliage base nickel à solidification dirigée DS200+Hf / Mechanical behavior of the directionally solidified nickel-base superalloy DS200+Hf

Coudon, Florent 27 March 2017 (has links)
De nombreuses études ont permis de développer des modèles de plasticité cristalline rendant compte de l’anisotropie d’un monocristal. Les matériaux à solidification dirigée (DS) peuvent être simulés avec des modèles semblables, sous réserve de connaître la morphologie et l'orientation cristallographique des grains contenus dans la pièce. Pour éviter ces analyses microstructurales coûteuses, il est possible de développer des approches, déterministes ou analysant les dispersions de la réponse sur un lot de << pièces synthétiques >> résolues par la méthode des éléments finis. Dans cette étude, nous avons tenté d'apporter les outils nécessaires aux deux types de modélisation. Avant tout, un modèle du monograin de DS200+Hf a été identifié pour une gamme de température allant de l’ambiante à 1200°C. Ensuite, plusieurs montées d'échelle ont été envisagées, d'abord sur un volume élémentaire représentatif (VER) puis sur une structure tridimensionnelle (éprouvette cruciforme). Sur le VER, la réponse de plusieurs modèles micromécaniques a été confrontée à des calculs de référence utilisant la méthode des éléments finis. Puis, le comportement mécanique d'une éprouvette cruciforme en DS200+Hf a été étudié, en réalisant des essais expérimentaux biaxiaux qui, ensuite, ont permis d'évaluer les prévisions du modèle. Ces résultats amènent à s'interroger sur la modélisation adaptée aux structures oligogranulaires (i.e. constituées d’un faible nombre de grains) : faut-il mailler explicitement l'échelle locale (les grains) dans la structure ou malgré la non-séparabilité des échelles, le modèle homogénéisé continue-t-il de fournir des résultats satisfaisants ? / Various studies were aimed at developing crystal plasticity models to account for the anisotropic mechanical behaviour of single crystals. Directionally solidified (DS) materials can be modeled using such approaches, taking into account the underlying crystallographic structure. It requires the knowledge of the position, shape and crystallographic orientations of grains. To prevent heavy microstructure analyses, other models have to be developed for industrial calculations, using homogenization theory or considering a batch of synthetic pieces calculated using Crystal Plasticity Finite Elements Method (CPFEM). The aim of this thesis is to bring computational tools to carry out the two types of modeling for industrial applications. First of all, a crystal plasticity model for one grain of DS200+Hf is defined ranging from room temperature to 1200°C. Some scale transition rules, using full-field or mean-field approaches, are studied first in the theoretical case of a representative volume element (RVE) and then on tri-dimensional structures in order to access overall and local responses. For the RVE responses, micromechanical models are compared with a reference produced by CPFEM for various loadings. Moreover, the mechanical behaviour of a DS200+Hf cruciform specimen is studied. Biaxial tests with digital image correlation allow us to check the model predictions. These results raise questions about the modeling of oligogranular structures (i.e. with a small number of grains): should it be accepted that the local scale must be explicitly meshed, or, despite the fact that scale separability is not ensured, can we consider that the homogenized model still produces reliable results?

Page generated in 0.0315 seconds