Spelling suggestions: "subject:"essais dde fatigue"" "subject:"essais dee fatigue""
1 |
Influence des conditions de soudage sur le comportement en fatigue d'un acier THR Dual Phase soudé par pointRossillon, Frédérique 15 November 2007 (has links) (PDF)
Les principaux modèles de comportement en fatigue des assemblages soudés par point ne prennent en compte que des paramètres géométriques. Or, les contraintes résiduelles, la microstructure de la Zone Affectée Thermiquement et la forme du fond d'entaille sont, a priori, autant de facteurs d'influence supplémentaires. L'objectif de ce travail est la compréhension des facteurs prédominants de la tenue en fatigue des assemblages soudés par point en acier THR, afin de proposer des conditions de soudage permettant un comportement amélioré. Pour analyser finement les résultats d'essais, des méthodologies et des outils d'observation sont développés : suivi de fissure, fractographie MEB, analyse métallographique. En soudage, l'observation des structures primaires permet de comprendre la formation du point de soudure. Dans certains cas, la solidification débute alors que le courant est encore délivré à l'assemblage. De nombreux essais de fatigue sont réalisés sur des assemblages de traction-cisaillement en acier Dual Phase pour étudier l'influence des conditions de soudage. Par l'utilisation combinée des différents outils, l'effet des conditions de soudage et les principaux facteurs d'influence sur la durée de vie de l'assemblage sont dégagés. L'étape de propagation de fissure est peu sensible aux conditions de soudage, une modélisation fiabiliste de cette étape est proposée. L'amorçage de fissure se révèle être l'étape cruciale. Un cycle de soudage adapté permet d'obtenir un comportement en fatigue amélioré grâce à une modification favorable du champ de contraintes résiduelles en fond d'entaille , tout en gardant des séquences de soudage sur composant acceptables. Ces résultats ouvrent de réelles perspectives d'application industrielle.
|
2 |
Mécanismes d'endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l'humidité relative et de la microstructure induite par le moulage par injectionARIF, Muhamad Fatikul 25 March 2014 (has links) (PDF)
Le présent travail s'appuie sur une approche expérimentale étendue visant l'identification des mécanismes d'endommagement en chargement quasi-statique et en fatigue du PA66/GF30, en prenant notamment en compte l'influence de la teneur en eau et de la microstructure induite par le moulage par injection. Les essais et les observations in situ au MEB mettent en exergue le rôle déterminant de l'humidité relative sur l'initiation, le niveau et la chronologie de l'endommagement. Une analyse par micro-tomographie aux rayons X sur des échantillons ayant subi un chargement de fatigue montre que l'endommagement augmente continuellement et progressivement au cours de la fatigue, et plus significativement dans la deuxième moitié de sa durée de vie. Les résultats obtenus en quasi-statique et en fatigue révèlent des mécanismes d'endommagement similaires, notamment une décohésion des interfaces fibre/matrice. Une chronologie générale de l'endommagement est établie. Celui-ci s'initie en extrémités de fibres ou plus globalement là où les fibres sont relativement proches les unes des autres. Il s'ensuit des décohésions interfaciales se propageant le long des fibres. A une contrainte en flexion plus élevée, des microfissures de la matrice peuvent apparaître et se propager par coalescence, ce qui aboutira à la rupture. Ces résultats expérimentaux permettent d'alimenter une modélisation multi-échelles de l'endommagement à fort contenu physique. Celle-ci contribuera alors à une prédiction pertinente de l'endommagement dans les thermoplastiques renforcés pour application automobile.
|
3 |
Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection / Damage mechanisms in short glass fiber reinforced polyamide-66 under monotic and fatigue loading : Effect of relative humidity and injection molding induced microstructureArif, Muhamad Fatikul 25 March 2014 (has links)
Le présent travail s'appuie sur une approche expérimentale étendue visant l'identification des mécanismes d'endommagement en chargement quasi-statique et en fatigue du PA66/GF30, en prenant notamment en compte l'influence de la teneur en eau et de la microstructure induite par le moulage par injection. Les essais et les observations in situ au MEB mettent en exergue le rôle déterminant de l'humidité relative sur l'initiation, le niveau et la chronologie de l'endommagement. Une analyse par micro-tomographie aux rayons X sur des échantillons ayant subi un chargement de fatigue montre que l'endommagement augmente continuellement et progressivement au cours de la fatigue, et plus significativement dans la deuxième moitié de sa durée de vie. Les résultats obtenus en quasi-statique et en fatigue révèlent des mécanismes d'endommagement similaires, notamment une décohésion des interfaces fibre/matrice. Une chronologie générale de l'endommagement est établie. Celui-ci s'initie en extrémités de fibres ou plus globalement là où les fibres sont relativement proches les unes des autres. Il s'ensuit des décohésions interfaciales se propageant le long des fibres. A une contrainte en flexion plus élevée, des microfissures de la matrice peuvent apparaître et se propager par coalescence, ce qui aboutira à la rupture. Ces résultats expérimentaux permettent d'alimenter une modélisation multi-échelles de l'endommagement à fort contenu physique. Celle-ci contribuera alors à une prédiction pertinente de l'endommagement dans les thermoplastiques renforcés pour application automobile. / The current work focuses on extensive experimental approaches to identify quasi-static and fatigue damage behavior of PA66/GF30 considering various effects such as relative humidity and injection process induced microstructure. By using in situ SEM tests, it was observed that relative humidity conditions strongly impact the damage mechanisms in terms of their initiation, level and chronology. The X-ray micro-tomography analysis on fatigue loaded samples demonstrated that the damage continuously increases during fatigue loading, but the evolution occurs more significantly in the second half of the fatigue life. From the results of damage investigation under quasi-static and fatigue loading, it was established that both loading types exhibit the same damage mechanisms, with fiber/matrix interfacial debonding as the principal damage mechanisms. General damage chronologies were proposed as the damage initiates at fiber ends and more generally at locations where fibers are relatively close to each other due to the generation of local stress concentrations. Afterwards, interfacial decohesions further propagate along the fiber/matrix interface. At high relative flexural stress, matrix microcracks can develop and propagate, leading to the damage accumulation and then the final failure. The experimental findings are important to provide a physically based damage mechanisms scenarios that can be integrated into multiscale damage models. These models will contribute towards reliable predictions of damage in reinforced thermoplastics for lightweight automotive applications.
|
4 |
Phenomena occurring during cyclic loading and fatigue tests on bituminous materials : Identification and quantification / Phénomènes apparaissant dans les matériaux bitumineux lors de chargements cycliques et d’essais de fatigue : Identification et quantificationBabadopulos, Lucas 15 September 2017 (has links)
La fatigue est un des principaux mécanismes de dégradation des chaussées. En laboratoire, la fatigue est simulée en utilisant des essais de chargement cyclique, généralement sans période de repos. L’évolution du module complexe (une propriété du matériau utilisée dans la caractérisation de la rigidité des matériaux viscoélastiques) est suivie de manière à caractériser l’endommagement. Son changement est généralement interprété comme étant dû au dommage, alors que d’autres phénomènes (se distinguant du dommage par leur réversibilité) apparaissent. Des effets transitoires, propres aux matériaux viscoélastiques, apparaissent lors des tout premiers cycles (2 ou 3) et produisent une erreur dans la détermination du module complexe. La non-linéarité (dépendance du module complexe avec le niveau de déformation) est caractérisée par une diminution réversible instantanée du module et une augmentation de l’angle de phase qui est observée avec l’augmentation de l’amplitude de déformation. De plus, pendant le chargement, de l’énergie mécanique est dissipée en raison du caractère visqueux du comportement du matériau. Cette énergie se transforme principalement en chaleur ce qui induit une augmentation de température. Cela produit une diminution de module liée à cet auto-échauffement. Quand le matériau revient à la température initiale, le module initial est alors retrouvé. La partie restante du changement de module peut être expliquée, d’une part par un autre phénomène réversible, appelé dans la littérature « thixotropie », et d’autre part par le dommage « réel », qui est irréversible. Cette thèse explore ces phénomènes dans les bitumes, mastics (bitume mélangé avec des particules fines, dont le diamètre est inférieur à 80μm) et enrobés bitumineux. Un chapitre (sur la nonlinearité) présente des essais de « balayage d’amplitude de déformation » avec augmentation ou/et diminution des amplitudes sont présentés. Un autre se concentre sur l’auto-échauffement. Il comprend une proposition de procédures de modélisation dont les résultats sont comparés avec des résultats des cycles initiaux d’essais de fatigue. Finalement, un chapitre est dédié à l’analyse du module complexe mesuré pendant le chargement et les phases de repos. Des essais de chargement et repos ont été réalisés sur bitume (où le phénomène de thixotropie est supposé avoir lieu) et mastic, de manière à déterminer l’effet de chacun des phénomènes identifiés sur l’évolution du module complexe des matériaux testés. Les résultats de l’étude sur la nonlinearité suggèrent que son effet vient principalement du comportement non linéaire du bitume, qui est déformé de manière très non-homogène dans les enrobés bitumineux. Il est démontré qu’un modèle de calcul thermomécanique simplifié de l’échauffement local, ne considérant aucune diffusion de chaleur, peut expliquer le changement initial de module complexe observé au cours des essais cycliques sur enrobés. Néanmoins, la modélisation de la diffusion de chaleur a démontré que cette diffusion est excessivement rapide. Cela indique que la distribution de l’augmentation de température nécessaire pour expliquer complètement le module complexe observé ne peut pas être atteinte. Un autre phénomène réversible, qui a des effets sur le module complexe similaires à ceux d’un changement de température, doit donc avoir lieu. Ce phénomène est considéré être de la thixotropie. Finalement, à partir des essais de chargement et repos, il est démontré qu’une partie majeure du changement de module complexe au cours des essais cycliques vient des processus réversibles. Le dommage se cumule de manière approximativement linéaire par rapport au nombre de cycles. Le phénomène de thixotropie semble partager la même direction sur l’espace complexe que la nonlinéarité. Cela indique que les deux phénomènes sont possiblement liés par la même origine microstructurelle. Des travaux supplémentaires sur le phénomène de thixotropie sont nécessaires. / Fatigue is a main pavement distress. In laboratory, fatigue is simulated using cyclic loading tests, usually without rest periods. Complex modulus (a material stiffness property used in viscoelastic materials characterisation) evolution is monitored, in order to characterise damage evolution. Its change is generally interpreted as damage, whereas other phenomena (distinguishable from damage by their reversibility) occur. Transient effects, proper to viscoelastic materials, occur during the very initial cycles (2 or 3) and induce an error in the measurement of complex modulus. Nonlinearity (strain-dependence of the material’s mechanical behaviour) is characterised by an instantaneous reversible modulus decrease and phase angle increase observed when strain amplitude increases. Moreover, during loading, mechanical energy is dissipated due to the viscous aspect of material behaviour. This energy turns mainly into heat and produces a temperature increase. This produces a modulus decrease due to self-heating. When the material is allowed to cool back to its initial temperature, initial modulus is recovered. The remaining stiffness change can be explained partly by another reversible phenomenon, called in the literature “thixotropy”, and, then, by the “real” damage, which is irreversible. This thesis investigates these phenomena in bitumen, mastic (bitumen mixed with fine particles, whose diameter is smaller than 80μm) and bituminous mixtures. One chapter (on nonlinearity) presents increasing and/or decreasing strain amplitude sweep tests. Another one focuses on selfheating. It includes a proposition of modelling procedures whose results are compared with the initial cycles from fatigue tests. Finally, a chapter is dedicated to the analysis of the measured complex modulus during both loading and rest periods. Loading and rest periods tests were performed on bitumen (where the phenomenon of thixotropy is supposed to happen) and mastic in order to determine the effect of each of the identified phenomena on the complex modulus evolution of the tested materials. Results from the nonlinearity investigation suggest that its effect comes primarily from the nonlinear behaviour of the bitumen, which is very non-homogeneously strained in the bituminous mixtures. It was demonstrated that a simplified thermomechanical model for the calculation of local selfheating (non-uniform temperature increase distribution), considering no heat diffusion, could explain the initial complex modulus change observed during cyclic tests on bituminous mixtures. However, heat diffusion modelling demonstrated that this diffusion is excessively fast. This indicates that the temperature increase distribution necessary to completely explain the observed complex modulus decrease cannot be reached. Another reversible phenomenon, which has effects on complex modulus similar to the ones of a temperature change, needs to occur. That phenomenon is hypothesised as thixotropy. Finally, from the loading and rest periods tests, it was demonstrated that a major part of the complex modulus change during cyclic loading comes from the reversible processes. Damage was xivfound to cumulate in an approximately linear rate with respect to the number of cycles. The thixotropy phenomenon seems to share the same direction in complex space as the one of nonlinearity. This indicates that both phenomena are possibly linked by the same microstructural origin. Further research on the thixotropy phenomenon is needed.
|
5 |
Mécanismes de fatigue dominés par les fibres dans les composites stratifiés d’unidirectionnels / Fibre-dominated fatigue failure in CFRP composite laminatesPagano, Fabrizio 04 October 2019 (has links)
Dans un composite stratifié, les plis orientés à 0° par rapport à la direction du chargement pilotent souvent la rupture sous chargement de traction. Les fibres procurent l’essentiel de la rigidité et la résistance de ces plis. Dans ces travaux de thèse, le comportement en fatigue des plis à 0° est analysé dans des stratifiés unidirectionnels (UD) et multidirectionnels, au moyen d’essais de fatigue multi-instrumentés. Un protocole expérimental est mis en place pour éviter les ruptures prématurées typiques des essais sur UD. L’évolution en fatigue des ruptures de fibres est identifiée par leur émission acoustique. Les mécanismes de fatigue dominés par la rupture des fibres sont analysés par un modèle aux éléments finis développé à l’échelle des constituants. / Under quasi-static and fatigue tension loads, the failure of a carbon fibre reinforced polymer laminate (CFRP) is usually driven by 0° plies. Carbon fibres give most of the stiffness and strength of these plies. In this work, the fatigue behaviour of 0° plies inside unidirectional (UD) and multidirectional laminates is analysed via multi-instrumented tension-tension fatigue tests. A numerical and experimental study is addressed to perform fatigue tests without the typical premature failures of the UD laminates. The acoustic emissions technique is used to identify the evolution law of fibre breaks. A finite element model is developed at the microscale (fibres and matrix) to analyse the fibre-driven fatigue mechanisms.
|
Page generated in 0.1473 seconds