• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O papel da água de hidratação na estrutura e conformação de hemoproteínas visto pelas mudanças na simetria e estado de spin do centro ativo: um estudo por RPE / The role of water molecules in the hydration of hemeproteins, structural and conformation changes viwed by symmetry changes and spin states of the active centers:an EPR study

Martin Neto, Ladislau 08 July 1988 (has links)
Neste trabalho foi estudado a influência da água na estabilização da estrutura e conformação da mioglobina (Mb) e hemoglobina (Hb) através de mudanças no centro ativo (grupo heme), detectadas por Ressonância Paramagnética Eletrônica (RPE). Utilizou-se os derivados meta Mb e nitrosil-Mb de baleia, meta Mb eqüina, meta Hb humana e meta Hb bovina. Amostras com diferentes graus de hidratação (0 a 0,50g H2/g proteína) foram submetidas as medidas de RPE, a T= -160&#176C, acompanhando o sinal do íon ferro (III) nas metas Mb (e Hb) e do grupo NO na nitrosil-Mb. A fração populacional dos complexos formados foram obtidos a partir da integral dupla do espectro de RPE. Na desidratação da meta Mb 65% das moléculas perderam a água da sexta coordenação do ferro (III) dando origem a outros complexos. Um desses complexos foi o hemicromo H (bi-histidina) onde um átomo de nitrogênio da histidina distal E7 se coordena ao ferro, com a hélice E se movimentando em direção ao heme. Adicionalmente a formação do hemicromo observou-se uma diminuição de 40% de moléculas detectáveis por RPE, na desidratação, e sugeriu-se a formação de moléculas com ferro reduzido [Fe (II)] como explicação para essa redução. Foi observado também um alargamento da linha com g &#8776 6 para as amostras com graus de hidratação menores que 0,20g H2O/g Mb devido a desvios da simetria axial em torno do íon ferro (III). Esses desvios de simetria foi proposto originar-se de distorções conformacionais nas amostras com baixa hidratação. Em níveis de hidratação acima de 0,20g H2O/g Mb observou-se um aumento considerável de centros detectáveis por RPE com a recuperação de moléculas com a forma meta. Na meta Hb somente 5% das moléculas permaneceram com a água da sexta coordenação do ferro após a desidratação. As outras 95% das moléculas deram origem a dois tipos de hemicromos (55%) e moléculas de Fe2+ (40%). Foram formados o hemicromo H e principalmente o hemicromo P (o 5&#176 ligante do ferro deve ser o átomo de enxofre da cisteína da cadeia &#946 posição 93 (&#94693), vizinho da histidina proximal &#94692 que é deslocada, e o 6&#176 ligante é proposto ser o nitrogênio da histidina distal E7). Em um nível de hidratação em torno de 0,40g H2O/g Hb há um aumento considerável de moléculas que voltam a ter a água na 6&#176 coordenação do ferro com o concomitante decréscimo da quantidade de hemicromos e de moléculas com ferro (II). Na adição do gás NO nas amostras de meta Mb de baleia com diferentes graus de hidratação houve a formação significante do complexo Fe2+ - NO somente abaixo de 0,25g H2O/g Mb. Em valores superiores de hidratação (até 0,50g H2O/g Mb) as amostras tornaram-se praticamente diamagnética, após a adição do NO, com a formação do complexo Fe2+ - NO+. Os resultados foram interpretados supondo que o NO reage diretamente com íons Fe2+ disponíveis abaixo de 0,25g H2O/g Hb formando o complexo Fe2+ - NO paramagnético. Em hidratações superiores como praticamente não há mais íons Fe2+ disponíveis o NO reduz o Fe3+ parando no intermediário Fe2+ - NO+ - diamagnético. O espectro tripleto observado para o NO em baixa hidratação na Mb é associado a um complexo onde o ferro (II) está pentacoordenado. Isso indica que a histidina proximal F8 se afastou do heme tornando possível a entrada de um novo grupo em seu lugar / In this work the role of water was studied in the stabilization of structure and conformation of myoglobin (Mb) and hemoglobin ( Hb) by changes in the active center (heme group), detected by Electron Paramagnetic Resonance (EPR). Whale met Mb and nitrosyl-Mb, equine met Mb, human and bovine met Hb were used. Samples with differents hydration degrees (0 to 0,50 g H2O/g protein) were measured by EPR, T= -160&#176C, analysing the iron (III) signal in the met Mb (and Hb) and NO signal in the nitrosyl-Mb. The populational fractions of complexes were obtained by double integration of EPR spectrum. In the dehydration of met Mb 65% of molecules lost the water molecule coordinated to the iron (II) giving origin to other complexes. One of these complexes was the hemichrome H (bishistidin) where the nitrogen atom of the E7 distal histidin binds to the iron (III). For this to occur the E helix must be close to the heme group. A percentual of 40% of the molecules were not detected by EPR in the dehydration and we suggest the reduction of iron (III) to iron (II) in these molecules. We also observed an increase of line width of g &#8764 6 signal in the samples with hydration degree below 0,20g H2O/g Mb, due to changes in the axial symmetry around at iron(III) ion. These symmetry changes were suggested to occur due to conformational distortions in the samples at low hydration. For hydrations levels above 0,20g H2O/g Mb a considerable increase was observed in the groups detectable EPR with recuperation of molecules in the met form. In met Hb only 5% of molecules remained with the water molecule coordinated to the iron after dehydration. The other 95% of molecules gave origin to two types of hemicromes (55%) and molecules with iron (II) (40%). The hemichromes observed were the bi-histidin and hemichrome P (the proximal histidin 92 was deslocated with the coordination of sulphur atom of cystein 93). For hydration levels around 0,40 g H2O/g Hb there is a considerable increase of molecules that return to met form. There is for the same hydration level a decrease of quantities of hemichromes and molecules with iron (II). In the NO gas addition to whale met Mb sample with differents hydration degrees we observed significant formation of Fe (II) - NO complex only below 0,25 g H2O/g Mb. For higher hydration levels (until 0,50 g H2O/g Mb) after the NO addition, the samples were pratically diamagnetic, with the formation of Fe (II) NO+ complex. The results were interpreted supposing that NO binds directly to Fe (II) ion that is present below 0,25 g H2O/g Hb with the formation of a paramagnetic complex Fe (II) - NO. For higher hydrations there is no iron (II) available and the NO reduces the iron (III) with the formation of intermediate diamagnetic complex Fe (II) NO+. The triplet spectrum displayed by NO at low hydration in Mb is associated with a complex where the iron (II) is pentacoordinated. This result indicates that F8 proximal histidin moves away from the heme group possibilitating the coordination of a new group in this place
2

O papel da água de hidratação na estrutura e conformação de hemoproteínas visto pelas mudanças na simetria e estado de spin do centro ativo: um estudo por RPE / The role of water molecules in the hydration of hemeproteins, structural and conformation changes viwed by symmetry changes and spin states of the active centers:an EPR study

Ladislau Martin Neto 08 July 1988 (has links)
Neste trabalho foi estudado a influência da água na estabilização da estrutura e conformação da mioglobina (Mb) e hemoglobina (Hb) através de mudanças no centro ativo (grupo heme), detectadas por Ressonância Paramagnética Eletrônica (RPE). Utilizou-se os derivados meta Mb e nitrosil-Mb de baleia, meta Mb eqüina, meta Hb humana e meta Hb bovina. Amostras com diferentes graus de hidratação (0 a 0,50g H2/g proteína) foram submetidas as medidas de RPE, a T= -160&#176C, acompanhando o sinal do íon ferro (III) nas metas Mb (e Hb) e do grupo NO na nitrosil-Mb. A fração populacional dos complexos formados foram obtidos a partir da integral dupla do espectro de RPE. Na desidratação da meta Mb 65% das moléculas perderam a água da sexta coordenação do ferro (III) dando origem a outros complexos. Um desses complexos foi o hemicromo H (bi-histidina) onde um átomo de nitrogênio da histidina distal E7 se coordena ao ferro, com a hélice E se movimentando em direção ao heme. Adicionalmente a formação do hemicromo observou-se uma diminuição de 40% de moléculas detectáveis por RPE, na desidratação, e sugeriu-se a formação de moléculas com ferro reduzido [Fe (II)] como explicação para essa redução. Foi observado também um alargamento da linha com g &#8776 6 para as amostras com graus de hidratação menores que 0,20g H2O/g Mb devido a desvios da simetria axial em torno do íon ferro (III). Esses desvios de simetria foi proposto originar-se de distorções conformacionais nas amostras com baixa hidratação. Em níveis de hidratação acima de 0,20g H2O/g Mb observou-se um aumento considerável de centros detectáveis por RPE com a recuperação de moléculas com a forma meta. Na meta Hb somente 5% das moléculas permaneceram com a água da sexta coordenação do ferro após a desidratação. As outras 95% das moléculas deram origem a dois tipos de hemicromos (55%) e moléculas de Fe2+ (40%). Foram formados o hemicromo H e principalmente o hemicromo P (o 5&#176 ligante do ferro deve ser o átomo de enxofre da cisteína da cadeia &#946 posição 93 (&#94693), vizinho da histidina proximal &#94692 que é deslocada, e o 6&#176 ligante é proposto ser o nitrogênio da histidina distal E7). Em um nível de hidratação em torno de 0,40g H2O/g Hb há um aumento considerável de moléculas que voltam a ter a água na 6&#176 coordenação do ferro com o concomitante decréscimo da quantidade de hemicromos e de moléculas com ferro (II). Na adição do gás NO nas amostras de meta Mb de baleia com diferentes graus de hidratação houve a formação significante do complexo Fe2+ - NO somente abaixo de 0,25g H2O/g Mb. Em valores superiores de hidratação (até 0,50g H2O/g Mb) as amostras tornaram-se praticamente diamagnética, após a adição do NO, com a formação do complexo Fe2+ - NO+. Os resultados foram interpretados supondo que o NO reage diretamente com íons Fe2+ disponíveis abaixo de 0,25g H2O/g Hb formando o complexo Fe2+ - NO paramagnético. Em hidratações superiores como praticamente não há mais íons Fe2+ disponíveis o NO reduz o Fe3+ parando no intermediário Fe2+ - NO+ - diamagnético. O espectro tripleto observado para o NO em baixa hidratação na Mb é associado a um complexo onde o ferro (II) está pentacoordenado. Isso indica que a histidina proximal F8 se afastou do heme tornando possível a entrada de um novo grupo em seu lugar / In this work the role of water was studied in the stabilization of structure and conformation of myoglobin (Mb) and hemoglobin ( Hb) by changes in the active center (heme group), detected by Electron Paramagnetic Resonance (EPR). Whale met Mb and nitrosyl-Mb, equine met Mb, human and bovine met Hb were used. Samples with differents hydration degrees (0 to 0,50 g H2O/g protein) were measured by EPR, T= -160&#176C, analysing the iron (III) signal in the met Mb (and Hb) and NO signal in the nitrosyl-Mb. The populational fractions of complexes were obtained by double integration of EPR spectrum. In the dehydration of met Mb 65% of molecules lost the water molecule coordinated to the iron (II) giving origin to other complexes. One of these complexes was the hemichrome H (bishistidin) where the nitrogen atom of the E7 distal histidin binds to the iron (III). For this to occur the E helix must be close to the heme group. A percentual of 40% of the molecules were not detected by EPR in the dehydration and we suggest the reduction of iron (III) to iron (II) in these molecules. We also observed an increase of line width of g &#8764 6 signal in the samples with hydration degree below 0,20g H2O/g Mb, due to changes in the axial symmetry around at iron(III) ion. These symmetry changes were suggested to occur due to conformational distortions in the samples at low hydration. For hydrations levels above 0,20g H2O/g Mb a considerable increase was observed in the groups detectable EPR with recuperation of molecules in the met form. In met Hb only 5% of molecules remained with the water molecule coordinated to the iron after dehydration. The other 95% of molecules gave origin to two types of hemicromes (55%) and molecules with iron (II) (40%). The hemichromes observed were the bi-histidin and hemichrome P (the proximal histidin 92 was deslocated with the coordination of sulphur atom of cystein 93). For hydration levels around 0,40 g H2O/g Hb there is a considerable increase of molecules that return to met form. There is for the same hydration level a decrease of quantities of hemichromes and molecules with iron (II). In the NO gas addition to whale met Mb sample with differents hydration degrees we observed significant formation of Fe (II) - NO complex only below 0,25 g H2O/g Mb. For higher hydration levels (until 0,50 g H2O/g Mb) after the NO addition, the samples were pratically diamagnetic, with the formation of Fe (II) NO+ complex. The results were interpreted supposing that NO binds directly to Fe (II) ion that is present below 0,25 g H2O/g Hb with the formation of a paramagnetic complex Fe (II) - NO. For higher hydrations there is no iron (II) available and the NO reduces the iron (III) with the formation of intermediate diamagnetic complex Fe (II) NO+. The triplet spectrum displayed by NO at low hydration in Mb is associated with a complex where the iron (II) is pentacoordinated. This result indicates that F8 proximal histidin moves away from the heme group possibilitating the coordination of a new group in this place
3

Estudo computacional da não conservação do spin: reação do ferro porfirina com diferentes ligantes axiais e reação de haber-weiss em fase gasosa

Leitão, Ezequiel Fragoso Vieira 22 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-09T13:41:39Z No. of bitstreams: 1 arquivototal.pdf: 5544525 bytes, checksum: 9b6efae1c8b35552884ead95fb3851ea (MD5) / Made available in DSpace on 2017-08-09T13:41:39Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5544525 bytes, checksum: 9b6efae1c8b35552884ead95fb3851ea (MD5) Previous issue date: 2017-02-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis work was carried out a computational study of some reactions forbidden and allowed by spin. The first reaction involves investigated the dissociation of the ligands iron porphyrins ((FeP(L)2, onde, L = H2O, dimethylnitrosamine, Imidazole and Pyridine) and the other concerns the Haber-Weiss mechanism to species such as R-OOH + O2•–, onde R = H, CH3 e CH3CH2. The mechanisms of the both reactions represent a major challenge from the point of view of computational choice of the appropriate method since it involves a large number of stationary points and, in some cases, with different spin multiplicities. For dissociation reactions with Fe-porphyrins were chosen ligands weak and strong field ligands. At this stage we used various DFT methods (OLYP, BP86, oTPSS, M06, M06L, M06L2X, B3PW91, PBE1PBE, B2PLYP e DSD-PBEP86) to estimate the order of spin states for the metal in the form Fe(III) and Fe(II) and some procedures to calculate and potential energy surface of these reactions. The results show that the function of the double-hybrid class DSD-PBEP86 can correctly predict the order of the spin states of the systems studied metalloporphyrin and characterize the crossing of the surfaces of the different spin states during the reaction. The second study the Haber-Weiss reaction with three kinds of peroxides, namely hydrogen peroxide, peroxide and methyl ethyl peroxide. For this problem, we were mapped some mechanisms of reactions that lead to the formation of the products reported in the literature. The reaction of H2O2 with O2•– occurs by two competing reaction channels. The major product (O2 + O•–⋯H2O) follows by a reaction forbidden by spin, while the minor product (H2O⋯O3•–) assumes a reaction allowed by spin. The reaction spin forbidden undergoes intersystem crossing region and the mechanism proves to be governed by the change of the overall electronic configuration during the reaction. In reaction CH3OOH + O2•–, for the first time, is proposed a reaction mechanism and a prediction about the enthalpy of the different reactions that may occur. In the case of the reaction between the methyl, the ethyl peroxide and superoxide is allowed by spin. The computational results of the reaction enthalpy of these reactions are in good agreement with the values found in the literature. / Neste trabalho de tese foi realizado um estudo computacional de algumas reações proibidas e permitidas por spin. A primeira reação investigada envolve a dissociação de ligantes na ferroporfina (FeP(L)2, onde, L = H2O, Dimetil-nitrosamina, Imidazol e Piridina) e a outra diz respeito ao mecanismo de Haber-Weiss para espécies como R-OOH + O2•–, com R = H, CH3 e CH3CH2. Os mecanismos de ambas reações representam um grande desafio do ponto de vista da escolha da metodologia computacional apropriada uma vez que envolvem um grande número de pontos estacionários e, em alguns casos, com diferentes multiplicidades de spin. Para as reações de dissociação com Fe - porfinas foram escolhidos ligantes de campos fraco e forte. Nesta etapa foram utilizados vários métodos da DFT (OLYP, BP86, oTPSS, M06, M06L, M06L2X, B3PW91, PBE1PBE, B2PLYP e DSD-PBEP86) para estimar o ordenamento dos estados de spin para o metal na forma Fe(III) e Fe(II) e alguns procedimentos para calcular e superfície de energia potencial dessas reações. Os resultados mostram que o funcional DSD-PBEP86 consegue prever corretamente o ordenamento dos estados de spin dos sistemas metaloporfirínicos estudados e caracterizar o cruzamento das superfícies dos diferentes estados de spin durante a reação. O segundo estudo trata da reação de Haber-Weiss com três tipos de peróxidos, a saber: peróxido de hidrogênio, metilhidroperóxido e etilhidroperóxido. Para esse problema, foram mapeados alguns mecanismos de reações que levam à formação dos produtos relatados na literatura. A reação do H2O2 + O2•– ocorre por dois canais de reação competitivos. O produto majoritário (O2 + O•–⋯H2O) segue por uma reação proibida por spin, enquanto o produto minoritário (H2O⋯O3•–) assume uma reação permitida por spin. A reação proibida por spin passa por uma região de cruzamento intersistema e o mecanismo mostra ser governado pela mudança da configuração eletrônica total durante a reação. Na reação do CH3OOH com O2•–, pela primeira vez, é proposto um mecanismo de reação e uma previsão acerca da entalpia das diferentes reações que podem ocorrer. No caso da reação entre o metilhidroperóxido, o etilhidroperóxido com o superóxido é do tipo permitida por spin. Os resultados computacionais da entalpia de reação dessas reações estão em boa concordância com os valores encontrados na literatura.

Page generated in 0.0854 seconds