Spelling suggestions: "subject:"estocasticidade"" "subject:"estocasticidad""
1 |
Modelamento estocástico para a expressão gênica / Modeling stochastic gene expressionInnocentini, Guilherme da Costa Pereira 07 March 2008 (has links)
Nesta dissertação consideramos um o modelo para um gene como sendo um sistema de dois estados, tipo spin, e apresentamos um modelo estocástico para a expressão gênica. As soluções estacionárias e, também, as dependentes do tempo, para o processo de transcrição, são obtidas e as distribuições de probabilidade, que descrevem o estado funcional do gene, são calculadas analiticamente. O valor médio e o ruído transcricional na população de mRNA são analisados. O efeito do ruído transcricional na síntese proteica é contemplado acoplando-se os processo de transcrição e tradução. / In this dissertation we present a two state stochastic model, spin-like, for gene expression. The steady-state solutions and also the time-dependente solutions for the transcription are probed and the probability distribution functions, which describe the functional state of the gene, are exactly calculated. The mean value and the transcriptional noise in the mRNA population are analyzed. The effects of the transcriptional noise in the protein synthesis are contemplated by coupling the transcription and the translation.
|
2 |
Integration of renewable sources into hybrid renewable energy systems : contribution on spreading renewables in low voltage gridsPaiva, José Eduardo Monney de Sá January 2011 (has links)
Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 2011
|
3 |
Modelamento estocástico para a expressão gênica / Modeling stochastic gene expressionGuilherme da Costa Pereira Innocentini 07 March 2008 (has links)
Nesta dissertação consideramos um o modelo para um gene como sendo um sistema de dois estados, tipo spin, e apresentamos um modelo estocástico para a expressão gênica. As soluções estacionárias e, também, as dependentes do tempo, para o processo de transcrição, são obtidas e as distribuições de probabilidade, que descrevem o estado funcional do gene, são calculadas analiticamente. O valor médio e o ruído transcricional na população de mRNA são analisados. O efeito do ruído transcricional na síntese proteica é contemplado acoplando-se os processo de transcrição e tradução. / In this dissertation we present a two state stochastic model, spin-like, for gene expression. The steady-state solutions and also the time-dependente solutions for the transcription are probed and the probability distribution functions, which describe the functional state of the gene, are exactly calculated. The mean value and the transcriptional noise in the mRNA population are analyzed. The effects of the transcriptional noise in the protein synthesis are contemplated by coupling the transcription and the translation.
|
4 |
Produção de entropia em um modelo estocástico irreversível / Entropy production in a stochastic irreversible modelLeonardo Crochik 23 June 2005 (has links)
Estudamos nessa dissertação um modelo para um gás em contato com dois banhos de partículas a potenciais químicos distintos. Isso foi feito através de um modelo de gás na rede (modelo de Ising) em que esta é dividida em duas sub-redes R1 e R2 e a evolução temporal se dá através da competição de duas dinâmicas markovianas: uma (dinâmica A) realiza o fluxo de partículas de uma sub-rede a outra, simulando o contato com um banho térmico à temperatura T , enquanto a outra (dinâmica B) tira ou põe partículas nas sub-redes, simulando o contato com banhos de partículas a potenciais químicos mu1 e mu2 e temperatura T . Estudamos, através de aproximações de campo médio dinâmico e de simulações de Monte Carlo, o diagrama de fases e as propriedades críticas do modelo, obtendo comportamento crítico similar ao do modelo de Ising de equilíbrio, exceto em uma pequena região do diagrama de fases em que detectam-se fases reentrantes. Calculamos também a produção de entropia do modelo. O estudo do comportamento crítico dessa grandeza deu origem a um novo expoente crítico zeta relacionado à divergência da derivada da produção de entropia com relação à temperatura. Obtivemos zeta=0 (divergência logaritimica). Verificamos, por fim, utilizando nesse caso aproximações de campo médio, o limite de validade de dois teoremas da termodinâmica de não equilíbrio: o teorema da mínima produção de entropia e o critério universal de evolução. Com relação ao primeiro teorema, determinamos em que limites podemos considerar a dinâmica do modelo como uma dinâmica que descreve um sistema próximo a uma situação de equilíbrio termodinâmico. Com relação ao critério universal de evolução, encontramos situações para as quais o teorema aparentemente não é satisfeito. Acreditamos que esse fato se deva a um elemento de instabilidade trazido indevidamente pela aproximação (de campo médio) utilizada. A investigação dessa questão foi postergada para um próximo trabalho. / We studied a model of a gas in contact with two baths of particles. We used a model of a gas in a lattice (Ising model) in which the net is divided in two: the sub-net R1 and the sub-net R2. The system evolves in time according to the competition between two dynamics: one (dynamic A) that realizes the flow of particles from one sub-net to the other, simulating the contact with a heat bath at temperature T while the other one (dynamic B ) removes or put particles in the sub-nets, simulating the contact with particle baths at chemical potentials mu1 and mu2 and temperature T. We studied, using mean-field approximations and Monte Carlo simulations, the phase diagram and the critical properties of the model, getting similar critical behavior to the Ising model in equilibrium, except in a small region of the phase diagram in which there are reentrant phases. We also calculated the entropy production of the model. The study of its critical behavior results in the definition of a new critical exponent zeta related to the divergence of the derivative of the entropy production with respect to the temperature. We obtained zeta =0 (logarithmic divergence). We verified, finally, using in this case mean-field approximations, the limit of validity of two theorems from nonequilibrium thermodynamics: the minimum entropy production theorem and the universal evolution criteria. Regarding the first theorem, we determined in what limits we can consider the model\' s dynamics as ``close\'\' to equilibrium. Regarding the universal evolution criteria, we found situations in which the theorem is apparently violated. We believe that this violation must be consequence of an improper instability element brought by the approximation (of mean-field) used. The investigation of this question was delayed to a next work.
|
5 |
Produção de entropia em um modelo estocástico irreversível / Entropy production in a stochastic irreversible modelCrochik, Leonardo 23 June 2005 (has links)
Estudamos nessa dissertação um modelo para um gás em contato com dois banhos de partículas a potenciais químicos distintos. Isso foi feito através de um modelo de gás na rede (modelo de Ising) em que esta é dividida em duas sub-redes R1 e R2 e a evolução temporal se dá através da competição de duas dinâmicas markovianas: uma (dinâmica A) realiza o fluxo de partículas de uma sub-rede a outra, simulando o contato com um banho térmico à temperatura T , enquanto a outra (dinâmica B) tira ou põe partículas nas sub-redes, simulando o contato com banhos de partículas a potenciais químicos mu1 e mu2 e temperatura T . Estudamos, através de aproximações de campo médio dinâmico e de simulações de Monte Carlo, o diagrama de fases e as propriedades críticas do modelo, obtendo comportamento crítico similar ao do modelo de Ising de equilíbrio, exceto em uma pequena região do diagrama de fases em que detectam-se fases reentrantes. Calculamos também a produção de entropia do modelo. O estudo do comportamento crítico dessa grandeza deu origem a um novo expoente crítico zeta relacionado à divergência da derivada da produção de entropia com relação à temperatura. Obtivemos zeta=0 (divergência logaritimica). Verificamos, por fim, utilizando nesse caso aproximações de campo médio, o limite de validade de dois teoremas da termodinâmica de não equilíbrio: o teorema da mínima produção de entropia e o critério universal de evolução. Com relação ao primeiro teorema, determinamos em que limites podemos considerar a dinâmica do modelo como uma dinâmica que descreve um sistema próximo a uma situação de equilíbrio termodinâmico. Com relação ao critério universal de evolução, encontramos situações para as quais o teorema aparentemente não é satisfeito. Acreditamos que esse fato se deva a um elemento de instabilidade trazido indevidamente pela aproximação (de campo médio) utilizada. A investigação dessa questão foi postergada para um próximo trabalho. / We studied a model of a gas in contact with two baths of particles. We used a model of a gas in a lattice (Ising model) in which the net is divided in two: the sub-net R1 and the sub-net R2. The system evolves in time according to the competition between two dynamics: one (dynamic A) that realizes the flow of particles from one sub-net to the other, simulating the contact with a heat bath at temperature T while the other one (dynamic B ) removes or put particles in the sub-nets, simulating the contact with particle baths at chemical potentials mu1 and mu2 and temperature T. We studied, using mean-field approximations and Monte Carlo simulations, the phase diagram and the critical properties of the model, getting similar critical behavior to the Ising model in equilibrium, except in a small region of the phase diagram in which there are reentrant phases. We also calculated the entropy production of the model. The study of its critical behavior results in the definition of a new critical exponent zeta related to the divergence of the derivative of the entropy production with respect to the temperature. We obtained zeta =0 (logarithmic divergence). We verified, finally, using in this case mean-field approximations, the limit of validity of two theorems from nonequilibrium thermodynamics: the minimum entropy production theorem and the universal evolution criteria. Regarding the first theorem, we determined in what limits we can consider the model\' s dynamics as ``close\'\' to equilibrium. Regarding the universal evolution criteria, we found situations in which the theorem is apparently violated. We believe that this violation must be consequence of an improper instability element brought by the approximation (of mean-field) used. The investigation of this question was delayed to a next work.
|
Page generated in 0.0583 seconds