Spelling suggestions: "subject:"ctching"" "subject:"crutching""
211 |
Studies of float glass surfaces by neutron and x-ray reflectionDalgliesh, R. M. January 2001 (has links)
No description available.
|
212 |
Chalcogenide Glasses for Infrared Applications: New Synthesis Routes and Rare Earth DopingHubert, Mathieu January 2012 (has links)
Chalcogenide glasses and glass-ceramics present a high interest for the production of thermal imaging lenses transparent in the 3-5 μm and 8-12 μm windows. However, chalcogenide glasses are conventionally synthesized in sealed silica ampoules which have two major drawbacks. First, the low thermal conductivity of silica limits the sample dimensions and second the silica tubes employed are single use and expensive, and represent up to 30% of the final cost of the material. The present work therefore addresses the development of innovative synthesis methods for chalcogenide glass and glass-ceramics that can present an alternative to the silica tube route. The method investigated involves melting the raw starting elements in reusable silica containers. This method is suitable for the synthesis of stable chalcogenide glasses compositions such as GeSe₄ but uncontrolled crystallization and homogenization problems are experienced for less stable compositions. The second approach involves preparation of amorphous chalcogenide powders by ball milling of raw elements. This mechanosynthesis step is followed by consolidation of the resulting powders to produce bulk glasses. Hot Uniaxial Pressing is suitable for compositions stable against crystallization. However, uncontrolled crystallization occurs for the unstable 80GeSe₂-20Ga₂Se₃ glass composition. In contrast consolidation through Spark Plasma Sintering (SPS) allows production of bulk glasses in a short duration at relatively low temperatures and is appropriate for the synthesis of unstable glasses. A sintering stage of only 2 min at 390°C is shown to be sufficient to obtain infrared transparent 80GeSe₂-20Ga₂Se₃ bulk glasses. This method enables the production of lenses with a 4-fold increase in diameter in comparison to those obtained by melt/quenching technique. Moreover, increasing the SPS treatment duration yielded infrared transparent glass-ceramics with enhanced mechanical properties. This innovative synthesis method combining mechanosynthesis and SPS has been patented in the framework if this study. The controlled etching of 80GeSe₂-20Ga₂Se₃ glass-ceramics in acid solution yields nanoporous materials with enhanced surface area. The porous layer created on the surface of the glass-ceramic is shown to play the role of anti-reflection coating and increase the optical transmission in the infrared range by up to 10%. These materials may have potential for the production of sensors with increased sensitivity in the infrared. The influence of indium and lead addition on the thermal and optical properties of the 80GeSe₂-20Ga₂Se₃ glass has also been assessed. Increased In or Pb contents tend to decrease the Tg of the glasses and shift the optical band gap toward higher wavelengths. A systematic ceramization study emphasizes the difficulty of controlling the crystallization for glasses in the systems GeSe₂-Ga₂Se₃-In₂Se₃ and GeSe₂-Ga₂Se₃-PbSe. No crystallization of the In₂Se₃ and PbSe crystalline phase was obtained. Finally, the possibility of producing rare-earth doped 80GeSe₂-20Ga₂Se₃ glass-ceramics transparent in the infrared region up to 16 μm is demonstrated. Enhanced photoluminescence intensity and reduced radiative lifetimes are observed with increased crystallinity in these materials.
|
213 |
Formation of Aminosilane and Thiol Monolayers on Semiconductor Surfaces and Bulk Wet Etching of III--V SemiconductorsJain, Rahul January 2012 (has links)
Continuous scaling down of the dimensions of electronic devices has made present day computers more powerful. In the front end of line, the minimum lateral dimensions in a transistor have shrunk from 45 nm in 2007 to 22 nm currently, and the gate oxide film thickness is two to three monolayers. This reduction in dimensions makes surface preparation an increasingly important part of the device fabrication process. The atoms or molecules that terminate surfaces function as passivation layers, diffusion barriers, and nucleation layers. In the back end of line, metal layers are deposited to connect transistors. We demonstrate a reproducible process that deposits a monolayer of aminopropyltrimethoxysilane molecules less than one nanometer thick on a silicon dioxide surface. The monolayer contains a high density of amine groups that can be used to deposit Pd and Ni and subsequently Co and Cu to serve as the nucleation layer in an electroless metal deposition process. Because of the shrinking device dimensions, there is a need to find new transistor channel materials that have high electron mobilities along with narrow band gaps to reduce power consumption. Compound III--V channel materials are candidates to enable increased performance and reduced power consumption at the current scaled geometries. But many challenges remain for such high mobility materials to be realized in high volume manufacturing. For instance, low defect density (1E7 /cm²) III--V and Ge on Si is the most fundamental issue to overcome before high mobility materials become practical. Unlike Si, dry etching of III-V semiconductor surfaces is believed to be difficult and uncontrollable. Therefore, new wet etching chemistries are needed. Si has been known to passivate by etching in hydrofluoric acid, but similar treatments on III--Vs are known to temporarily hydrogen passivate the surfaces. However, any subsequent exposure to the ambient reoxidizes the surface, resulting in a chemically unstable and high defect density interface. This work compares old and new wet etching chemistries and investigates new methods of passivating the III--V semiconductors.
|
214 |
Thin film diamond : electronic devices for high temperature, high power and high radiation applicationsPang, Lisa Yee San January 2000 (has links)
No description available.
|
215 |
Investigations into the growth and etching of antimonides by chemical beam epitaxy and related techniquesHoward, Fraser Peter January 1999 (has links)
No description available.
|
216 |
Textiles in three dimensions : an investigation into processes employing laser technology to form design-led three-dimensional textilesMatthews, Janette January 2011 (has links)
This research details an investigation into processes employing laser technology to create design-led three-dimensional textiles. An analysis of historical and contemporary methods for making three-dimensional textiles categorises these as processes that construct a three-dimensional textile, processes that apply or remove material from an existing textile to generate three-dimensionality or processes that form an existing textile into a three-dimensional shape. Techniques used in these processes are a combination of joining, cutting, forming or embellishment. Laser processing is embedded in textile manufacturing for cutting and marking. This research develops three novel processes: laser-assisted template pleating which offers full design freedom and may be applied to both textile and non-textile materials. The language of origami is used to describe designs and inspire new design. laser pre-processing of cashmere cloth which facilitates surface patterning through laser interventions in the manufacturing cycle. laser sintering on textile substrates which applies additive manufacturing techniques to textiles for the generation of three-dimensional surface patterning and structures. A method is developed for determining optimum parameters for laser processing materials. It may be used by designers for parameter selection for processing new materials or parameter modification when working across systems.
|
217 |
Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environmentsPonnuswamy, Thomas Anand 08 1900 (has links)
Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime (DMG) probe molecules. The detection of Ni2+ was based on the appearance of a unique infrared absorption peak at 1572 cm-1 that corresponds to the C=N stretching mode in the nickel dimethylglyoximate, Ni(DMG)2, complex. The suitable operational pH range for the nickel infrared sensor is between 6-8. The detection limit of the nickel infrared sensor is 1 ppm in the sample solution of pH=8. ATR - FTIR spectroscopy was used to study the changes that the hydride mode underwent when subjected to different environments. The presence of trace amounts of Cu2+ in HF solutions was found to roughen the silicon surface as observed ATR-IR spectroscopy. The initial stages of oxidation in UPW and Cu2+ / UPW was studied. Trace amounts of Cu2+ were found to drastically increase the rate of oxidation, while the rate of oxidation was found to be retarded on removing dissolved oxygen that was present in UPW.
|
218 |
Surface photovoltage transients for p-type AlGaNPhumisithikul, Karen L 01 January 2015 (has links)
There is an understanding of surface photovoltage (SPV) behavior for GaN, yet little is known about the SPV behavior for AlGaN. In this work, a Kelvin probe was used to measure the SPV for p-type AlGaN. Very slow SPV transients were found in AlGaN, which could not be explained with a simple thermionic model. A possible explanation of this behavior is the segregation of impurities to the surface, which causes significant reduction of the depletion region width (down to 2 nm), with carrier tunneling and hopping becoming the dominant mechanisms responsible for the SPV transients. To verify this assumption, the near-surface defective region (about 40 nm) has been removed through the ICP-RIE process. After the etching, the SPV transients became fast and increased in magnitude by about 0.6 eV. By using the thermionic model, band bending was estimated to be -1 eV.
|
219 |
A Tinker's StudioHudnall, Catherine L. 01 January 2005 (has links)
This thesis is meant to describe and explain a space in which one can imagine things necessary for making objects that wobble, squeak, clack, creak, crank in and out, open and close, light up, roll about and generally hurl themselves into creepy existence. It is also an endeavor to describe some objects having lately taken such a journey into being. These include (but are not limited to): a chess table for one, an examining table and tray, two workbenches, chessmen and women, creaky floorboards, stairs on wheels, a stool on wheels, and Monsters of various sizes and shapes.
|
220 |
Alternative Orthodontic Bonding Protocol Using Self Etching PrimerCaldwell, Rush-Baker Gaines 01 January 2008 (has links)
The purpose of the current study was to develop a bonding method that can achieve clinically acceptable bond strength values while leaving a minimum amount of adhesive on the tooth surface during the debonding process. One hundred teeth were randomly assigned into groups. Five different enamel surface preparation protocols were tested (N = 20, each): Conventional acid etch, standard SEP, SEP applied with a light brush stroke (altered SEP 1), SEP applied directly to the composite of pre-coated bracket (altered SEP 2), and Primer Only groups. Brackets were debonded using an Instron universal testing machine (Instron, Canton, MA) in shear mode and the mean shear bond strength values were calculated. In addition, enamel surfaces were examined under light microscope to determine the location of failure using ARI. The Primer Only group had significantly lower mean shear strength (0.14 MPa, P0.05). With respect to ARI values, there was a significant difference among these four groups. 85% of samples in the altered SEP 2 group had 10% or less composite resin left on their surfaces. This group had also a mean shear bond strength value of 11.43 MPa, significantly above the minimal strength needed for orthodontic attachment bonding, and the lowest ARI values overall. Therefore, application of SEP directly to the composite resin of the pre-coated brackets may be an ideal bonding method by providing adequate bond strength and leaving a minimum amount of composite resin on the tooth surface during debonding. It should be kept in mind that future in-vivo studies would be needed to confirm the findings obtained from the current in-vitro study.
|
Page generated in 0.0613 seconds