• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 119
  • 57
  • 40
  • 20
  • 16
  • 15
  • 14
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 492
  • 108
  • 89
  • 86
  • 66
  • 65
  • 60
  • 60
  • 58
  • 58
  • 57
  • 57
  • 50
  • 49
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Implementação de um módulo Ethernet 10/100Mbps com interface Avalon para o processador Nios II da Altera / Implementation of an Ethernet 10/100Mbps core with Avalon interface for Nios II processor from Altera

Ricardo Menotti 06 May 2005 (has links)
O presente trabalho apresenta a implementação de um core de rede Ethernet 10/100Mbps com interface para o barramento Avalon para utilização em conjunto com o processador Nios II da Altera. A tecnologia Ethernet foi implementada em computação reconfigurável e utilizou-se como base um módulo disponível na Internet denominado OpenCores MAC 10/100. O projeto foi desenvolvido para ser aplicado em sistemas embarcados, mais especificamente para o uso em um robô móvel em desenvolvimento no Laboratório de Computação Reconfigurável do ICMC/USP. O core foi incorporado à biblioteca da ferramenta SoPC Builder da Altera, visando uma fácil integração do mesmo em outros projetos. Foram utilizadas as ferramentas Quartus II e ModelSim para o desenvolvimento e testes do sistema, além de dois kits Nios versão Stratix para a validação do projeto, sendo as placas interligadas ponto-a-ponto sem a utilizaçao de transceivers analógicos. / This work presents the implementation of a network Ethernet 10/100Mbps core with interfaces to Avalon bus for using with the Nios II processor from Altera. The Ethernet technology was implemented in reconfigurable computing and was based in the OpenCores MAC 10/100 available on Internet. The project was developed for embedded systems applications, more specifically for a mobile robot in development at Reconfigurable Computing Laboratory from ICMC/USP. The core was incorporated to SoPC Builder tool’s library from Altera, aiming to facilitate the integration with others projects. To development and system tests were used Quartus II and ModelSim, and two Nios Development kit Statix Edition for project validation. The boards were linked peer-to-peer, without use analog transceivers.
92

A Meta Analysis of Gigabit Ethernet over Copper Solutions for Cluster-Networking

Hoefler, Torsten, Rehm, Wolfgang 28 June 2005 (has links) (PDF)
The IEEE Standard for Gigabit Networking was accepted in June 1998 and ratified as IEEE 802.3z. This standard uses considers an optical cable for signal transmission. One year later a new standard for Gigabit Ethernet over unshielded twisted pair of the 5th category was certified under the name 802.3ab. Nowadays, there are a couple of younger and older studies about Gigabit Ethernet technology and performance. This Meta Analysis is intended to put the main results altogether into one document suitable for a proper choice of gigabit networking equipment for cluster computers.
93

Modul řízení krokového motoru pro poziční systém přes Ethernet / Control module of stepper motor for positional system with Ethernet

Raszka, Dan January 2018 (has links)
This paper describes the design of Stepper motor controller module controlled over Ethernet for positioning system. Part of this work describes analysis of the assignment, design of modular circuit, choosing right components and prototype design of communication and power module. In another part each module is described with emphasis to modularity. It deals with description of manufactured prototypes and their tested paramethers.
94

Ethernet in Steer-by-wire Applications

Ibrahim, Muhammad January 2011 (has links)
A Controller Area Network (CAN) is a multi-master serial data communication bus designed primarily for the automotive industry. It is reliable and cost-effective and features error detection and fault confinement capabilities. CAN has been widely used in other applications, such as onboard trains, ships, construction vehicles, and aircraft. CAN has even been applied within the industrial automation segment in a range of devices such as programmable controllers, industrial robots, digital and analog I/O modules, sensors, etc. Despite its robustness and other positive features, the CAN bus has limitations in form of limited maximum data rate and maximum bus length. Also the CAN network topology is rigidly fixed which is a severe limiting factor in some of its application cases, therefore several industrial actors are evaluating alternatives to CAN. Ethernet is one of the potential candidates to replace CAN. It is a widespread and well knowntechnology, easily accessible, and many off-the-shelf solutions are available. It can support extended networks and offers wide possibilities in terms of network topology thanks to active switches. It features very high bandwidth, which has increased systematically from 10 Mbps to 100 Gbps year after year, always preserving backward compatibility to the maximum possible extent. The purpose of this thesis project is to investigate the possibility of replacing the CAN bus with Ethernet according to the following requirements: Standard off-the-shelf components and software stacks No modification of the network node application software, i.e. messages formatted accordingto CAN protocols must be transferred by means of Ethernet. A main issue is that CAN is time deterministic; it is always possible to predict the maximum latency in a message transfer. On the other hand Ethernet is still considered unreliable for time-critical applications, although the advent of Ethernet switches has minimized this non-deterministic behavior. A unique approach to this issue is offered as a result of the work done by Time Critical Networks, a newly started Swedish company. Their tool makes it possible to calculate the maximum forwarding time of a frame in an Ethernet network. This tool may make it possible to validate the use of Ethernet for time-critical applications. CPAC Systems, a company in the Volvo group which develops and manufactures steer-by-wire systems based on the CAN technology, wishes to verify whether Ethernet could now be considered as a solution to complement or replace CAN, thus overcoming CAN’s limitations. This verification is the goal of this master thesis project. The work was carried out through three different phase: First we performed a theoretical evaluation by modeling the Ethernet network using Time Critical Network’s tools. Next we verified the results by implementing the modeled CAN/Ethernet network that was previously modeled. Finally, we validated the solution by directly testing the modeled CAN/Ethernet in combination with CPAC System’s steer-by-wire technology. The results obtained show that Ethernet in combination with Time Critical Network’s modeling tool, when it comes to time-determinism, can be a complement and/or an alternative to the CAN bus. / En Controller Area Network (CAN) är en multi-master seriell datakommunikation buss utformad främst för fordonsindustrin. Den är pålitlig och kostnadseffektiv och har feldetektering och fel förmåga instängdhet. CAN har ofta används i andra tillämpningar, som ombord på tåg, fartyg, fordonkonstruktion, och flygplan. CAN har även använts inom industriautomation segmentet i en radapparater som programmerbara styrsystem, industrirobotar, digitala och analoga I/O-moduler, sensorer, etc. Trots sin robusthet och andra positiva egenskaper har CAN-bus begränsningar i form av begränsad maximal datahastighet och maximal buss längd. Även CAN nätverkstopologin är fast förankrade vilket är en svår begränsande faktor i några av dess tillämpning fall därför flera industriella aktörer utvärderar alternativ till CAN. Ethernet är en av de potentiella sökande för att ersätta CAN. Det är en utbredd och väl känd teknik, lättillgänglig, och många off-the-shelf lösningar finns tillgängliga. Det kan stödja utökade nätverk och erbjuder stora möjligheter när det gäller nätverkstopologin tack vare aktiv växlar. Den har mycket hög bandbredd, vilket har ökat systematiskt från 10 Mbps till 100 Gbps år efter år, alltid bevara bakåtkompatibilitet i största möjliga utsträckning. Syftet med detta examensarbete är att undersöka möjligheten att ersätta CAN-bussen med Ethernet i enlighet med följande krav: Standard off-the-shelf komponenter och stackar programvara Inga ändringar av nätverket nod programvara, formaterade dvs meddelanden enligt CAN protokollmåste överföras med hjälp av Ethernet. En viktig fråga är att CAN är dags deterministisk, det är alltid möjligt att förutse den maximala fördröjning i ett överfört meddelande. Å andra sidan Ethernet är fortfarande betraktas som otillförlitliga för tidskritiska applikationer, även om tillkomsten av Ethernet-switchar har minimeratdenna icke-deterministiska beteendeEn unik inställning till denna fråga är erbjuds som ett resultat av det arbete som tidskritiska Networks, ett nystartat svenskt företag. Deras verktyg gör det möjligt att beräkna den maximal avidarebefordran tid för en ram i ett Ethernet-nätverk. Detta verktyg kan göra det möjligt att valideraanvändningen av Ethernet för tidskritiska applikationer. CPAC Systems, ett bolag inom Volvokoncernen som utvecklar och tillverkar styr-by-wire-system baserade på CAN-tekniken, vill kontrollera om Ethernet nu kan betraktas som en lösning för att komplettera eller ersätta kan således övervinna CAN: s begränsningar. Denna kontroll är målet för detta examensarbete. Arbetet genomfördes genom tre olika fas: Först utförs en teoretisk utvärdering av modellering Ethernet-nätverk med hjälp av tidskritiska Networks verktyg. Nästa vi verifierat resultat genom att genomföra de modellerade CAN / Ethernet-nätverk som tidigare modellerats. Slutligen, validerade vi lösningen genom att direkt testa de modellerade CAN / Ethernet i kombination med CPAC Systems steer-by-wire-teknik. De resultat som erhållits visar att Ethernet i kombination med tidskritiska Networksmodelleringsverktyg, när det gäller tid-determinism, kan vara ett komplement och / eller ett alternativtill CAN-bussen.
95

A low-cost man-portable free-space optics communication device for Ethernet applications

Perera, Janaka P. 12 1900 (has links)
Approved for public release, distribution is unlimited / This thesis sought to design and implement a low-cost, portable, Free-Space Optics (FSO) communications device for Ethernet applications. Under some circumstances such a device would have utility at a Combat Operations Center (COC), a Field Artillery Position, or wherever else fiber optic cable is used in garrison or field. The design was based on commercial off the shelf components originally designed for fiber optic applications. Based on a 155 megabits per second (Mbps) media converter, the design used two fiber optic transceivers, coupled to collimating lenses to pass data over free-space. Sustained data rate of 100 Mbps was achieved with full network functionality on the optical bench with a low-power (0.5mW) laser diode transmitter without focusing optics on the receiver. The laser diode power(mounted on device), was measured with acceptable losses up to 300 ft during testing using a photodiode with focusing optics. The findings indicate that the system with proper collecting optics could be optimized for free-space communication at short to moderate ranges. / Captain, United States Marine Corps
96

Optimizing Point-to-Point Ethernet Cluster Communication

Reinhardt, Mirko 01 March 2006 (has links) (PDF)
This work covers the implementation of a raw Ethernet communication module for the Open MPI message passing library. Thereby it focuses on both the reduction of the communication latency for small messages and maximum possible compatibility. Especially the need for particular network devices, adapted network device drivers or kernel patches is avoided. The work is divided into three major parts: First, the networking subsystem of the version 2.6 Linux kernel is analyzed. Second, an Ethernet protocol family is implemented as a loadable kernel module, consisting of a basic datagram protocol (EDP), providing connection-less and unreliable datagram transport, and a streaming protocol (ESP), providing connection-oriented, sequenced and reliable byte streams. The protocols use the standard device driver interface of the Linux kernel for data transmission and reception. Their services are made available to user-space applications through the standard socket interface. Last, the existing Open MPI TCP communication module is ported atop the ESP. With bare EDP/ESP sockets a message latency of about 30 us could be achieved for small messages, which compared to the TCP latency of about 40 us is a reduction of 25 %.
97

NETWORK CONNECTIONS BEYOND IEEE 802.11

Zettwoch, Robert N. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / More and more aircraft system designs are incorporating a local-area-network (LAN) using either Fibre Channel (FC) or Ethernet. To date there hasn’t been a means for creating a FC node connection between an airborne network and a ground based FC network or for creating a reliable high-speed Ethernet connection between air and ground. Ethernet connections have had some success by using the IEEE 802.11 wireless LAN for these types of connections; however, these connections suffer from many inherent problems using this standard. Problems include the lack of telemetry spectrum control, security validation, high-speed data transfer efficiency, and channel acquisition time. This paper will describe a methodology that utilizes the IRIG-106 PCM standard for communicating between aircraft and ground-based networks. PCM can solve the aforementioned problems and it enables the user to take advantage of the many ARTM advances in PCM telemetry technology [1]. One such advance in technology has been the use of SOQPSK (Tier 1) or Multi-h CPM (Tier 2) to enable the user to effectively double or more their bandwidth efficiency compared to PCM/FM (or CPFSK) (Tier 0).
98

IP Protocols in Telemetry Systems

Weaver, Robert Jr., Snyder, Ed 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / This paper is intended to provide background into networking and IP protocols for non-IT personnel. It is not a study of networking and related protocols, as each of these topics would require a much longer period of time to explain. Addressed are considerations that should be required prior to locking a network design into a specific architecture. The systems available today, for the same cost as a good home PC, are becoming capable of performing critical tasks. It is highly recommended that the personnel who know the most about the data and how it will be used communicate with the personnel that know the network. Failing to explain or understand the networking nomenclature causes considerable wasted time and money. This paper is intended to encourage communications between the data creators and the data movers. We also want to demonstrate how new systems, hardware and software, designed to work with existing network devices used in non–telemetry applications, can make implementing IP in telemetry networks easier.
99

IEEE1588 – A solution for synchronization of networked data acquisition systems?

Corry, Diarmuid 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / One of the problems for manufacturers and users of flight test data acquisition equipment, is to guarantee synchronization between multiple units acquiring data on the vehicle. Past solutions have involved proprietary interconnects and multiple wire installations increasing weight and complexity and reducing inter-operation of units. This problem has become particularly important given the trend towards commercial busses, especially Ethernet, as a system interconnect. The IEEE1588 standard offers a way to transmitting time accurately over Ethernet. This paper discusses the standard, how it might be implemented, and examines the issues involved in adopting this standard for flight test data acquisition. A particular implementation that results in a synchronized four-wire Ethernet based distributed data acquisition system is discussed in section 3.
100

A SYSTEM APPROACH TO A NETWORK CENTRIC AIRBORNE DATA ACQUISITION SYSTEM

Berdugo, Albert, Hildin, John 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Airborne data acquisition systems have changed very little over the years. Their growth has primarily been in the area of digital filtering and the acquisition of new avionic busses. Communication between data acquisition units operating as a system still employs Time Division Multiplexing scheme. These schemes utilize command and data busses like CAIS and PCM. Although this approach is highly efficient, it has many drawbacks. These drawbacks have resulted in rigid system architecture, system bandwidth limitations, highly specialized recorders to acquire unique avionic busses that would otherwise overwhelm the system bandwidth, and unidirectional flow of data and control. This paper describes a network centric data acquisition system that is Ethernet based. Although Ethernet is known as an asynchronous bus, the paper will describe a deterministic time distribution over the bus per IEEE-1588 that allows the use of a packet network for airborne data acquisition. The acquisition unit within the network system is defined by its MIB (Management Information Base) and operates as a data source unit. Other network components may operate as a data sink unit, such as recorders, or as a data source and sink. The role of different units in the network system will be evaluated. The paper will also describe network gateways that allow the use of traditional PCM systems with a network-based system.

Page generated in 0.0273 seconds