Spelling suggestions: "subject:"euler anda navierstokes equations"" "subject:"euler anda avierstokes equations""
1 |
Modélisation et Simulation des Ecoulements Compressibles par la Méthode des Eléments Finis Galerkin Discontinus / Modeling and Simulation of Compressible Flows with Galerkin Finite Elements MethodsGokpi, Kossivi 28 February 2013 (has links)
L’objectif de ce travail de thèse est de proposer la Méthodes des éléments finis de Galerkin discontinus (DGFEM) à la discrétisation des équations compressibles de Navier-Stokes. Plusieurs challenges font l’objet de ce travail. Le premier aspect a consisté à montrer l’ordre de convergence optimal de la méthode DGFEM en utilisant les polynômes d’interpolation d’ordre élevé. Le deuxième aspect concerne l’implémentation de méthodes de ‘‘shock-catpuring’’ comme les limiteurs de pentes et les méthodes de viscosité artificielle pour supprimer les oscillations numériques engendrées par l’ordre élevé (lorsque des polynômes d’interpolation de degré p>0 sont utilisés) dans les écoulements transsoniques et supersoniques. Ensuite nous avons implémenté des estimateurs d’erreur a posteriori et des procédures d ’adaptation de maillages qui permettent d’augmenter la précision de la solution et la vitesse de convergence afin d’obtenir un gain de temps considérable. Finalement, nous avons montré la capacité de la méthode DG à donner des résultats corrects à faibles nombres de Mach. Lorsque le nombre de Mach est petit pour les écoulements compressibles à la limite de l’incompressible, la solution souffre généralement de convergence et de précision. Pour pallier ce problème généralement on procède au préconditionnement qui modifie les équations d’Euler. Dans notre cas, les équations ne sont pas modifiées. Dans ce travail, nous montrons la précision et la robustesse de méthode DG proposée avec un schéma en temps implicite de second ordre et des conditions de bords adéquats. / The aim of this thesis is to deal with compressible Navier-Stokes flows discretized by Discontinuous Galerkin Finite Elements Methods. Several aspects has been considered. One is to show the optimal convergence of the DGFEM method when using high order polynomial. Second is to design shock-capturing methods such as slope limiters and artificial viscosity to suppress numerical oscillation occurring when p>0 schemes are used. Third aspect is to design an a posteriori error estimator for adaptive mesh refinement in order to optimize the mesh in the computational domain. And finally, we want to show the accuracy and the robustness of the DG method implemented when we reach very low mach numbers. Usually when simulating compressible flows at very low mach numbers at the limit of incompressible flows, there occurs many kind of problems such as accuracy and convergence of the solution. To be able to run low Mach number problems, there exists solution like preconditioning. This method usually modifies the Euler. Here the Euler equations are not modified and with a robust time scheme and good boundary conditions imposed one can have efficient and accurate results.
|
2 |
Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)Ivan, Lucian 31 August 2011 (has links)
A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic and elliptic systems of conservation laws on body- fitted multi-block mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact least-squares
reconstruction technique following from a fixed central stencil with a monotonicity preserving limited piecewise linear reconstruction algorithm. The limited reconstruction is applied to computational cells with under-resolved solution content and the unlimited k-exact reconstruction
procedure is used for cells in which the solution is fully resolved. Switching in the
hybrid procedure is determined by a solution smoothness indicator. The hybrid approach
avoids the complexity associated with other ENO schemes that require reconstruction on
multiple stencils and therefore, would seem very well suited for extension to unstructured meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady refinement of the AMR mesh. The predictive capabilities of the proposed high-order AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-dimensional
compressible gaseous flows as well as for advection-diffusion problems characterized
by the full range of Peclet numbers, Pe. The ability of the scheme to accurately represent
solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range of problems. Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
|
3 |
Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)Ivan, Lucian 31 August 2011 (has links)
A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic and elliptic systems of conservation laws on body- fitted multi-block mesh. The spatial discretization of the hyperbolic (inviscid) terms is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact least-squares
reconstruction technique following from a fixed central stencil with a monotonicity preserving limited piecewise linear reconstruction algorithm. The limited reconstruction is applied to computational cells with under-resolved solution content and the unlimited k-exact reconstruction
procedure is used for cells in which the solution is fully resolved. Switching in the
hybrid procedure is determined by a solution smoothness indicator. The hybrid approach
avoids the complexity associated with other ENO schemes that require reconstruction on
multiple stencils and therefore, would seem very well suited for extension to unstructured meshes. The high-order elliptic (viscous) fluxes are computed based on a k-order accurate average gradient derived from a (k+1)-order accurate reconstruction. A novel h-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady refinement of the AMR mesh. The predictive capabilities of the proposed high-order AMR scheme are demonstrated for the Euler and Navier-Stokes equations governing two-dimensional
compressible gaseous flows as well as for advection-diffusion problems characterized
by the full range of Peclet numbers, Pe. The ability of the scheme to accurately represent
solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i.e., shocks and other discontinuities) is shown for a range of problems. Moreover, the ability to perform mesh refinement in regions of smooth but under-resolved and/or non-smooth solution content to achieve the desired resolution is also demonstrated.
|
Page generated in 0.1384 seconds