Spelling suggestions: "subject:"event anticipation"" "subject:"avent anticipation""
1 |
Theoretical and Methodological Issues in Driver DistractionPetzoldt, Tibor 07 September 2011 (has links) (PDF)
Fahrerablenkung ist ein Begriff, der in den vergangen Jahren verstärkt in das Blickfeld der Öffentlichkeit geraten ist. Dies ist im Wesentlichen zurückzuführen auf die deutlich steigende Verbreitung und Nutzung von Fahrerinformationssystemen. Gleichzeitig führt die steigende Automatisierung im Fahrzeug dazu, dass dem Fahrer in seiner subjektiven Wahrnehmung mehr Ressourcen zur Verfügung stehen, um sich anderen Aktivitäten wie etwa Essen, Rauchen oder Telefonieren zuzuwenden. Die steigende Aktualität dieser Problematik wirft viele Fragen auf. Wie häufig tritt Fahrerablenkung auf? Welche Konsequenzen hat sie? Welche kognitiven Prozesse zeichnen für diese Konsequenzen verantwortlich? Und wie kann man Fahrerablenkung messen?
Die vorliegende Dissertation besteht aus drei empirischen Beiträgen, sowie einer kurzen Einführung, die die grundlegenden Fragen und Befunde zum Thema Fahrerablenkung betrachtet. Das Augenmerk des ersten Beitrags liegt auf der Überprüfung theoretischer Annahmen zur Fahrerablenkung. Eine Vielzahl von Untersuchungen zeigt, dass sich kognitiv beanspruchende Zweitaufgaben negativ auf die Fahrleistung auswirken. Im vorliegenden Beitrag wird davon ausgegangen, dass dieser Effekt eine Folge von Interferenzen zwischen den Funktionen des Arbeitsgedächtnisses, die dazu dienen das Situationsmodell der Verkehrssituation aktuell zu halten, und den bearbeiteten Zweitaufgaben ist. Im Rahmen einer Simulatorstudie wurde diese Annahme überprüft. Es zeigte sich, dass die Probanden, die eine Zweitaufgabe ausführten, die speziell die Integration von neuen Informationen in das bestehende Situationsmodell behindern sollte, später auf antizipierbare kritische Ereignisse reagierten als Vergleichsgruppen. Im Gegensatz dazu ergaben sich für unvorhersehbare Ereignisse keine Unterschiede. Diese Ergebnisse weisen darauf hin, dass die negativen Effekte kognitiver Belastung tatsächlich auf Interferenzen mit spezifischen Arbeitsgedächtnisprozessen zurückzuführen sind.
Die beiden weiteren Beiträge befassen sich mit messmethodischen Fragen in Bezug auf Fahrerablenkung. In Beitrag zwei wird die Lane Change Task (LCT) thematisiert, eine Labormethode zur Erfassung von Ablenkung. Aufgabe der Probanden ist die Steuerung eines virtuellen Fahrzeuges mittels Lenkrad, und dabei konkret die Ausführung von Spurwechseln, bei gleichzeitiger Bearbeitung von Zweitaufgaben. Trotz eines standardisierten Versuchsaufbaus sind allerdings starke Messvarianzen zwischen verschiedenen Testreihen zu beobachten. Der Übungsgrad der Versuchsteilnehmer wurde dabei als eine mögliche Ursache identifiziert. In zwei Experimenten wurde dieser Vermutungnachgegangen. Probanden bearbeiteten parallel zur LCT Zweitaufgaben verschiedener Schwierigkeitsstufen, nachdem sie zuvor trainiert wurden. Es konnte gezeigt werden, dass der Grad der Übung tatsächlich einen Einfluss auf die Spurwechselperformanz hat, und dass dieser Einfluss auch Monate später noch zu finden ist. Es ist jedoch zweifelhaft, dass dieser Effekt allein ursächlich für die zu beobachtenden Messvarianzen ist.
Im dritten Beitrag wird die Critical Tracking Task (CTT) betrachtet, ein Verfahren, das im Kontext Fahrerablenkung bisher kaum Beachtung fand. Die CTT ist eine einfache Trackingaufgabe, welche vom Nutzer die Stabilisierung eines dynamischen, instabilen Elementes auf einem Bildschirm fordert. Die zur Bearbeitung der Aufgabe auszuführenden Tätigkeiten der kontinuierlichen visuellen Überwachung und manuellen Kontrolle sind grundsätzlich vergleichbar mit basalen Anforderungen der Fahraufgabe. Ziel war es, das Potenzial der CTT als Messverfahren von Fahrerablenkung durch Fahrerinformationssysteme zu überprüfen. Die Ergebnisse der vier durchgeführten Experimente, in denen sowohl künstliche als auch reale Aufgaben und Systeme bearbeitet und bedient wurden, legen den Schluss nahe, dass die CTT in der Tat in der Lage ist, das Ausmaß von Ablenkung ausgelöst durch Fahrerinformationssysteme zu quantifizieren.
|
2 |
Theoretical and Methodological Issues in Driver DistractionPetzoldt, Tibor 14 July 2011 (has links)
Fahrerablenkung ist ein Begriff, der in den vergangen Jahren verstärkt in das Blickfeld der Öffentlichkeit geraten ist. Dies ist im Wesentlichen zurückzuführen auf die deutlich steigende Verbreitung und Nutzung von Fahrerinformationssystemen. Gleichzeitig führt die steigende Automatisierung im Fahrzeug dazu, dass dem Fahrer in seiner subjektiven Wahrnehmung mehr Ressourcen zur Verfügung stehen, um sich anderen Aktivitäten wie etwa Essen, Rauchen oder Telefonieren zuzuwenden. Die steigende Aktualität dieser Problematik wirft viele Fragen auf. Wie häufig tritt Fahrerablenkung auf? Welche Konsequenzen hat sie? Welche kognitiven Prozesse zeichnen für diese Konsequenzen verantwortlich? Und wie kann man Fahrerablenkung messen?
Die vorliegende Dissertation besteht aus drei empirischen Beiträgen, sowie einer kurzen Einführung, die die grundlegenden Fragen und Befunde zum Thema Fahrerablenkung betrachtet. Das Augenmerk des ersten Beitrags liegt auf der Überprüfung theoretischer Annahmen zur Fahrerablenkung. Eine Vielzahl von Untersuchungen zeigt, dass sich kognitiv beanspruchende Zweitaufgaben negativ auf die Fahrleistung auswirken. Im vorliegenden Beitrag wird davon ausgegangen, dass dieser Effekt eine Folge von Interferenzen zwischen den Funktionen des Arbeitsgedächtnisses, die dazu dienen das Situationsmodell der Verkehrssituation aktuell zu halten, und den bearbeiteten Zweitaufgaben ist. Im Rahmen einer Simulatorstudie wurde diese Annahme überprüft. Es zeigte sich, dass die Probanden, die eine Zweitaufgabe ausführten, die speziell die Integration von neuen Informationen in das bestehende Situationsmodell behindern sollte, später auf antizipierbare kritische Ereignisse reagierten als Vergleichsgruppen. Im Gegensatz dazu ergaben sich für unvorhersehbare Ereignisse keine Unterschiede. Diese Ergebnisse weisen darauf hin, dass die negativen Effekte kognitiver Belastung tatsächlich auf Interferenzen mit spezifischen Arbeitsgedächtnisprozessen zurückzuführen sind.
Die beiden weiteren Beiträge befassen sich mit messmethodischen Fragen in Bezug auf Fahrerablenkung. In Beitrag zwei wird die Lane Change Task (LCT) thematisiert, eine Labormethode zur Erfassung von Ablenkung. Aufgabe der Probanden ist die Steuerung eines virtuellen Fahrzeuges mittels Lenkrad, und dabei konkret die Ausführung von Spurwechseln, bei gleichzeitiger Bearbeitung von Zweitaufgaben. Trotz eines standardisierten Versuchsaufbaus sind allerdings starke Messvarianzen zwischen verschiedenen Testreihen zu beobachten. Der Übungsgrad der Versuchsteilnehmer wurde dabei als eine mögliche Ursache identifiziert. In zwei Experimenten wurde dieser Vermutungnachgegangen. Probanden bearbeiteten parallel zur LCT Zweitaufgaben verschiedener Schwierigkeitsstufen, nachdem sie zuvor trainiert wurden. Es konnte gezeigt werden, dass der Grad der Übung tatsächlich einen Einfluss auf die Spurwechselperformanz hat, und dass dieser Einfluss auch Monate später noch zu finden ist. Es ist jedoch zweifelhaft, dass dieser Effekt allein ursächlich für die zu beobachtenden Messvarianzen ist.
Im dritten Beitrag wird die Critical Tracking Task (CTT) betrachtet, ein Verfahren, das im Kontext Fahrerablenkung bisher kaum Beachtung fand. Die CTT ist eine einfache Trackingaufgabe, welche vom Nutzer die Stabilisierung eines dynamischen, instabilen Elementes auf einem Bildschirm fordert. Die zur Bearbeitung der Aufgabe auszuführenden Tätigkeiten der kontinuierlichen visuellen Überwachung und manuellen Kontrolle sind grundsätzlich vergleichbar mit basalen Anforderungen der Fahraufgabe. Ziel war es, das Potenzial der CTT als Messverfahren von Fahrerablenkung durch Fahrerinformationssysteme zu überprüfen. Die Ergebnisse der vier durchgeführten Experimente, in denen sowohl künstliche als auch reale Aufgaben und Systeme bearbeitet und bedient wurden, legen den Schluss nahe, dass die CTT in der Tat in der Lage ist, das Ausmaß von Ablenkung ausgelöst durch Fahrerinformationssysteme zu quantifizieren.
|
Page generated in 0.0941 seconds