• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 20
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 52
  • 32
  • 23
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Physiology of Division of Labor in the Ant, Pogonomyrmex californicus

January 2012 (has links)
abstract: A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors. / Dissertation/Thesis / Ph.D. Biology 2012
82

Climate as a moderator of the effect of disease threat on interpersonal behavior

January 2012 (has links)
abstract: Infectious diseases have been a major threat to survival throughout human history. Humans have developed a behavioral immune system to prevent infection by causing individuals to avoid people, food, and objects that could be contaminated. This current project investigates how ambient temperature affects the activation of this system. Because temperature is positively correlated with the prevalence of many deadly diseases, I predict that temperature moderates the behavioral immune system, such that a disease prime will have a stronger effect in a hot environment compared to a neutral environment and one's avoidant behaviors will be more extreme. Participants were placed in a hot room (M = 85F) or a neutral room (M = 77F) and shown a disease prime slide show or a neutral slide show. Disgust sensitivity and perceived vulnerability surveys were used to measure an increased perceived risk to disease. A taste test between a disgusting food item (gummy bugs) and a neutral food item (gummy animals) measured food avoidance. There was no significant avoidance of the gummy and no significant difference in ratings of disgust sensitivity or perceived vulnerability as a function of temperature conditions. There were no significant interactions between temperature and disease. The conclusion is that this study did not provide evidence that temperature moderates the effect of disease cues on behavior. / Dissertation/Thesis / M.A. Psychology 2012
83

Comparative and Experimental Investigations of Cranial Robusticity in Mid-Pleistocene Hominins

January 2012 (has links)
abstract: Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development. / Dissertation/Thesis / Ph.D. Anthropology 2012
84

Development of feeding in ring-tailed lemurs

January 2012 (has links)
abstract: Fundamental hypotheses about the life history, complex cognition and social dynamics of humans are rooted in feeding ecology - particularly in the experiences of young animals as they grow. However, the few existing primate developmental data are limited to only a handful of species of monkeys and apes. Without comparative data from more basal primates, such as lemurs, we are limited in the scope of our understanding of how feeding has shaped the evolution of these extraordinary aspects of primate biology. I present a developmental view of feeding ecology in the ring-tailed lemur (Lemur catta) using a mixed longitudinal sample (infant through adult) collected at the Beza Mahafaly Special Reserve in southwestern Madagascar from May 2009 to March 2010. I document the development of feeding, including weaning, the transition to solid food, and how foods are included in infant diets. Early in juvenility ring-tailed lemurs efficiently process most foods, but that hard ripe fruits and insects require more time to master. Infants and juveniles do not use many of the social learning behaviors that are common in monkeys and apes, and instead likely rely both on their own trial and error and simple local enhancement to learn appropriate foods. Juvenile ring-tailed lemurs are competent and efficient foragers, and that mitigating ecological risks may not best predict the lemur juvenile period, and that increases in social complexity and brain size may be at the root of primate juvenility. Finally, from juvenility through adulthood, females have more diverse diets than males. The early emergence of sex differences in dietary diversity in juvenility that are maintained throughout adulthood indicate that, in addition to reproductive costs incurred by females, niche partitioning is an important aspect of sex differential feeding ecology, and that ontogenetic studies of feeding are particularly valuable to understanding how selection shapes adult, species-typical diets. Overall, lemur juvenility is a time to play, build social relationships, learn about food, and where the kernels of sex-typical feeding develop. This study of the ontogeny of feeding ecology contributes an important phylogenetic perspective on the relationship between juvenility and the emergent foraging behaviors of developing animals / Dissertation/Thesis / Ph.D. Anthropology 2012
85

Forces driving thermogenesis and parental care in pythons

January 2012 (has links)
abstract: Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution. / Dissertation/Thesis / Ph.D. Biology 2012
86

Definitely Directed Evolution (1890-1926): The Importance of Variation in Major Evolutionary Works by Theodor Eimer, Edward Drinker Cope, and Leo Berg

January 2014 (has links)
abstract: This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution as inextricably associated phenomena. This project develops three case studies. The first addresses the Swiss-German zoologist Theodor Eimer's book Organic Evolution (1890), which sought to undermine the work of noted evolutionist August Weismann. Second, the American paleontologist Edward Drinker Cope's Primary Factors (1896) developed a sophisticated system of inheritance that included the material of heredity and the energy needed to induce and modify ontogenetic phenomena. Third, the Russian biogeographer Leo Berg's Nomogenesis (1926) argued that the biological world is deeply structured in a way that prevents changes to morphology taking place in more than one or a few directions. These authors based their ideas on extensive empirical evidence of long-term evolutionary trajectories. They also sought to synthesize knowledge from a wide range of studies and proposed causes of evolution and development within a unified causal framework based on laws of evolution. While being mindful of the variation between these three theories, this project advances "Definitely Directed Evolution" as a term to designate these shared features. The conceptual coherence and reception of these theories shows that Definitely Directed Evolution from 1890 to 1926 is an important piece in reconstructing the wider history of theories of evolutionary directionality. / Dissertation/Thesis / Doctoral Dissertation Biology 2014
87

Three Perspectives on Multilevel Selection: An Experimental, Historical, and Synthetic Analysis of Group-Level Selection

January 2014 (has links)
abstract: During the 1960s, the long-standing idea that traits or behaviors could be explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological organization. For some this topic remains contentious, while others consider the debate settled, even while disagreeing about when and how resolution occurred, raising the question: "Why have these debates continued?" Here I explore the biology, history, and philosophy of the possibility of natural selection operating at levels of biological organization other than the organism by focusing on debates about group-level selection that have occurred since the 1960s. In particular, I use experimental, historical, and synthetic methods to review how the debates have changed, and whether different uses of the same words and concepts can lead to different interpretations of the same experimental data. I begin with the results of a group-selection experiment I conducted using the parasitoid wasp Nasonia, and discuss how the interpretation depends on how one conceives of and defines a "group." Then I review the history of the group selection controversy and argue that this history is best interpreted as multiple, interrelated debates rather than a single continuous debate. Furthermore, I show how the aspects of these debates that have changed the most are related to theoretical content and empirical data, while disputes related to methods remain largely unchanged. Synthesizing this material, I distinguish four different "approaches" to the study of multilevel selection based on the questions and methods used by researchers, and I use the results of the Nasonia experiment to discuss how each approach can lead to different interpretations of the same experimental data. I argue that this realization can help to explain why debates about group and multilevel selection have persisted for nearly sixty years. Finally, the conclusions of this dissertation apply beyond evolutionary biology by providing an illustration of how key concepts can change over time, and how failing to appreciate this fact can lead to ongoing controversy within a scientific field. / Dissertation/Thesis / Doctoral Dissertation Biology 2014
88

Investigating Wasp Societies: A Historical and Epistemological Study

January 2016 (has links)
abstract: The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses this question both from a narrative/historical and from a reflective/epistemological perspective. The historical narratives reconstruct the investigative pathways of the Italian entomologist Leo Pardi (1915-1990) and the British evolutionary biologist William D. Hamilton (1936-2000). The works of these two scientists represent respectively the beginning of our current understanding of immediate and evolutionary causes of social life. Chapter 1 shows how Pardi, in the 1940s, generated a conceptual framework to explain how wasp colonies function in terms of social and reproductive dominance. Chapter 2 shows how Hamilton, in the 1960s, attempted to evaluate his own theory of inclusive fitness by investigating social wasps. The epistemological reflections revolve around the idea of investigative framework for theory evaluation. Chapter 3 draws on the analysis of important studies on social wasps from the 1960s and 1970s and provides an account of theory evaluation in the form of an investigative framework. The framework shows how inferences from empirical data (bottom-up) and inferences from the theory (top-down) inform one another in the generation of hypotheses, predictions and statements about phenomena of social evolution. It provides an alternative to existing philosophical accounts of scientific inquiry and theory evaluation, which keep a strong, hierarchical distinction between inferences from the theory and inferences from the data. The historical narratives in this dissertation show that important scientists have advanced our knowledge of complex biological phenomena by constantly interweaving empirical, conceptual, and theoretical work. The epistemological reflections argue that we need holistic frameworks that account for how multiple scientific practices synergistically contribute to advance our knowledge of complex phenomena. Both narratives and reflections aim to inspire and inform future work in social evolution capitalizing on lessons learnt from the past. / Dissertation/Thesis / Doctoral Dissertation Biology 2016
89

Proximate and Ultimate Mechanisms of Nestmate Recognition in Ants

January 2016 (has links)
abstract: The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants. / Dissertation/Thesis / Doctoral Dissertation Biology 2016
90

The Functional Evolution of Human microRNA Families

January 2016 (has links)
abstract: MicroRNAs (miRNAs) are short non-coding RNAs that play key roles during metazoan development, and are frequently misregulated in human disease. MiRNAs regulate gene output by targeting degenerate elements primarily in the 3´ untranslated regions of mRNAs. MiRNAs are often deeply conserved, but have undergone drastic expansions in higher metazoans, leading to families of miRNAs with highly similar sequences. The evolutionary advantage of maintaining multiple copies of duplicated miRNAs is not well understood, nor has the distinct functions of miRNA family members been systematically studied. Furthermore, the unbiased and high-throughput discovery of targets remains a major challenge, yet is required to understand the biological function of a given miRNA. I hypothesize that duplication events grant miRNA families with enhanced regulatory capabilities, specifically through distinct targeting preferences by family members. This has relevance for our understanding of vertebrate evolution, as well disease detection and personalized medicine. To test this hypothesis, I apply a conjunction of bioinformatic and experimental approaches, and design a novel high-throughput screening platform to identify human miRNA targets. Combined with conventional approaches, this tool allows systematic testing for functional targets of human miRNAs, and the identification of novel target genes on an unprecedented scale. In this dissertation, I explore evolutionary signatures of 62 deeply conserved metazoan miRNA families, as well as the targeting preferences for several human miRNAs. I find that constraints on miRNA processing impact sequence evolution, creating evolutionary hotspots within families that guide distinct target preferences. I apply our novel screening platform to two cancer-relevant miRNAs, and identify hundreds of previously undescribed targets. I also analyze critical features of functional miRNA target sites, finding that each miRNA recognizes surprisingly distinct features of targets. To further explore the functional distinction between family members, I analyze miRNA expression patterns in multiple contexts, including mouse embryogenesis, RNA-seq data from human tissues, and cancer cell lines. Together, my results inform a model that describes the evolution of metazoan miRNAs, and suggests that highly similar miRNA family members possess distinct functions. These findings broaden our understanding of miRNA function in vertebrate evolution and development, and how their misexpression contributes to human disease. / Dissertation/Thesis / Doctoral Dissertation Molecular and Cellular Biology 2016

Page generated in 0.2319 seconds