• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise exergoeconômica de ciclo de refrigeração por compressão de vapor

Ferreira, Eduardo Manfredini [UNESP] 01 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-01Bitstream added on 2014-06-13T19:06:15Z : No. of bitstreams: 1 ferreira_em_me_guara_prot.pdf: 1285600 bytes, checksum: 03a101cdf37c8bef3994b4574415a90e (MD5) / Estudos de sistemas energético vem ganhando interesse atualmente, devido à possibilidade de escassez de combustíveis não renovéveis e, também, como uma fonte alternativa de geração de energia a partir de cmbustíveis relativamente mais baratos e menos poluentes. Neste ponto, esta dissertação apresenta um estudo de otimização envolvendo a análise de uma planta de refrigeração por compressão a qual é analisada dos pontos de vistaexergético e exergoeconômico, pela substituição do fluido refrigerante R-22 pelo R134a. Para análise da situação anteriormente descrita, recorreu-se a diferentes programas e suplementos computacionais utilizados em planilhas de cálculo, a saber, o Excel, visando-se identificar aquele que permitiria a obtenção dos reultados procurados com menor impacto quanto a deficiência na disponibilidade dos recursos necessários. Foi empregado, para tanto, o software EES, que conta com equações recursivas para o cálculo das propriedades termodinêmicas do R134a, ainda que seja pouco hábil no emprego dos modelos de otimização. Foi implementada uma rotina de análise exergoeconômica para plantas de refrigeração por compressão de vapor, tomando-sepor base o modelo proposto por Losano e Valero (!993)a partir de uma discussão da condição topológica em redes de grafos. / Studies of energy systems are gaining interest, currently, due to possibility of nonrenewable fuel scarcity and, also, as an alternative source of energy generation from relatively cheaper and less pollutant. fuels. In this point, this work presents an ptiization study involving the analysis of a compresison refrigeration plant for which is analyzed of the exergetic and exergoeconomic points of view, by the substitution of the cooling fluid R-22 by the R134a. For the analysis of the previously described situation, appealed to different programs and computational add-ins used in spreadsheets, as the Excel, aiming to identify one that would allow the attainment of the results looked up with the lesser impact as for the deficiency in the availability of necessary resources. It was used, thus, the EES software, that counts on recursive equation for the R134a thermodynamic properties calculation, still that is little skillful in the optmization models use. It was implemented a routine for exergetic and exergoeconomic analysis for vapor compression refrigeration plants, being overcome as background Lozano and Valero (!993) model from a quarrel of the topological condition in graphs networks.
2

Análise exergoeconômica de ciclo de refrigeração por compressão de vapor /

Ferreira, Eduardo Manfredini. January 2003 (has links)
Orientador: José Antônio Perrella Balestieri / Banca: Júlio Santana Antunes / Banca: Newton Galvão de Campos Leite / Resumo: Estudos de sistemas energético vem ganhando interesse atualmente, devido à possibilidade de escassez de combustíveis não renovéveis e, também, como uma fonte alternativa de geração de energia a partir de cmbustíveis relativamente mais baratos e menos poluentes. Neste ponto, esta dissertação apresenta um estudo de otimização envolvendo a análise de uma planta de refrigeração por compressão a qual é analisada dos pontos de vistaexergético e exergoeconômico, pela substituição do fluido refrigerante R-22 pelo R134a. Para análise da situação anteriormente descrita, recorreu-se a diferentes programas e suplementos computacionais utilizados em planilhas de cálculo, a saber, o Excel, visando-se identificar aquele que permitiria a obtenção dos reultados procurados com menor impacto quanto a deficiência na disponibilidade dos recursos necessários. Foi empregado, para tanto, o software EES, que conta com equações recursivas para o cálculo das propriedades termodinêmicas do R134a, ainda que seja pouco hábil no emprego dos modelos de otimização. Foi implementada uma rotina de análise exergoeconômica para plantas de refrigeração por compressão de vapor, tomando-sepor base o modelo proposto por Losano e Valero (!993)a partir de uma discussão da condição topológica em redes de grafos. / Abstract: Studies of energy systems are gaining interest, currently, due to possibility of nonrenewable fuel scarcity and, also, as an alternative source of energy generation from relatively cheaper and less pollutant. fuels. In this point, this work presents an ptiization study involving the analysis of a compresison refrigeration plant for which is analyzed of the exergetic and exergoeconomic points of view, by the substitution of the cooling fluid R-22 by the R134a. For the analysis of the previously described situation, appealed to different programs and computational add-ins used in spreadsheets, as the Excel, aiming to identify one that would allow the attainment of the results looked up with the lesser impact as for the deficiency in the availability of necessary resources. It was used, thus, the EES software, that counts on recursive equation for the R134a thermodynamic properties calculation, still that is little skillful in the optmization models use. It was implemented a routine for exergetic and exergoeconomic analysis for vapor compression refrigeration plants, being overcome as background Lozano and Valero (!993) model from a quarrel of the topological condition in graphs networks. / Mestre
3

Desempenho exergo-ambiental do processamento de petróleo e seus derivados. / Exergo-environmental performance of petroleum derived fuels processing.

Silva, Julio Augusto Mendes da 08 March 2013 (has links)
O processamento de petróleo e seus derivados é analisado pela aplicação combinada e sistemática da Primeira e da Segunda Lei da Termodinâmica, análise exergética, permitindo a localização dos principais processos destruidores da capacidade de realização de trabalho ao longo da cadeia de processamento. Após a localização das irreversibilidades, diversas opções para melhoria dos processos são avaliadas. A exergia consumida nos processos é dividida em renovável e não renovável e posteriormente repartida, junto com as respectivas emissões de CO2, entre as diversas correntes de cada unidade de processamento. Para uma repartição racional dos fluxos exergéticos e de CO2, a análise exergoeconômica foi utilizada. Um sistema, que permite interações cíclicas entre a cadeia produtiva dos principais combustíveis utilizados no Brasil e a produção de eletricidade, foi elaborado a fim de permitir uma comparação entre os diversos combustíveis levando em consideração toda a cadeia produtiva. Esta comparação está fundamentada no consumo de exergia renovável e não renovável e nas emissões de CO2. Pode-se concluir que o coque de petróleo é o combustível que mais emite CO2, em seguida, encontram-se o carvão e a gasolina. O diesel hidrotratado vem após a gasolina, devido principalmente ao consumo de hidrogênio pelo hidrotratamento. Embora o diesel convencional emita mais SOx e NOx, este diesel exige menos exergia não renovável e emite menos CO2 que o diesel hidrotratado. O hidrogênio, se produzido da forma convencional (reforma a vapor de hidrocarbonetos leves), é o combustível mais intenso em exergia não renovável e com emissão de CO2 próxima ao valor da gasolina e maior que o valor obtido para o diesel convencional. O etanol se mostra uma boa alternativa ao uso dos derivados de petróleo, mesmo considerando configurações típicas para as usinas sucroalcooleiras. / The oil processing is analyzed by the combined and systematic application of the First and Second Laws of Thermodynamics, exergy analysis, allowing the location of the processes responsable for the main destructions of work capability along the processing chain. After the location of irreversibilities, several options for improving processes efficiency are evaluated. The exergy consumed in the processes is divided into renewable and non-renewable and then distributed, along with their CO2 emissions, among the various currents of each processing unit. For a rational distribution of the exergy and CO2 flows, exergoeconomy analysis takes place. A system that allows cyclical interactions between the productive chain of the main fuels used in Brazil and electricity production, is designed to allow the comparison among different fuels taking into account the entire production chain. This comparison is based on renewable and non-renewable exergy consumption and CO2 emissions. It can be concluded that the petroleum coke is the fuel that emits more CO2 followed by coal and gasoline. The hydrotreated diesel comes after gasoline, mainly due to the consumption of hydrogen for hydrotreating. Although conventional diesel emit more NOx and SOx, this diesel requires less non-renewable exergy and emits less CO2 than hydrotreated diesel. Hydrogen, if produced in the conventional way (steam reforming of light hydrocarbons) is the fuel most intense in nonrenewable exergy consumption and has CO2 emission near the value of gasoline and higher than the value obtained for conventional diesel. Ethanol is a good alternative to the use of petroleum derived fuels, even considering typical configurations for sugarcane mills.
4

Comparação termodinâmica e ambiental (emissões de CO2) das rotas de produção e utilização de combustíveis veiculares derivados de petróleo e gás natural, biocombustíveis, hidrogênio e eletricidade (veículos elétricos). / Thermodynamics and environmental comparison (CO2 emissions) of production and end use routes of vehicle fuels, derived from petroleum, natural gas, biofuels, hydrogen and electricity (electric vehicles).

Flórez-Orrego, Daniel Alexander 21 February 2014 (has links)
O setor de transporte é um exemplo de atividade econômica que depende fundamentalmente das cadeias produtivas do petróleo, gás natural e biocombustíveis para sua operação, além de ser um dos principais consumidores da energia primária do país. Portanto, qualquer melhoria nos processos de produção e uso final dos combustíveis veiculares, repercute favoravelmente tanto na utilização dos recursos energéticos e o desempenho do setor, quanto no impacto ambiental e na economia nacional. Nesse sentido, faz-se necessário o desenvolvimento de uma metodologia que permita avaliar as diferentes rotas de produção e uso final, para determinar as principais fontes de degradação da energia e quantificar o impacto ambiental por meio de uma ferramenta apropriada. Uma valiosa ferramenta é a análise exergética ampliada, a qual provê uma oportunidade de quantificar os requerimentos exergéticos totais e não renováveis e as eficiências globais e, desse modo, perseguir e priorizar o uso daquelas fontes de energia mais favoráveis e amigáveis com o meio ambiente. A exergoeconomia, que visa à distribuição racional dos custos exergéticos entre os diversos produtos de uma mesma planta, usa a quantidade de exergia de cada produto como base para a distribuição da exergia despendida no respectivo processo. Desta forma, neste trabalho se apresenta uma análise comparativa sobre as rotas de produção e uso final dos combustíveis derivados do petróleo e o gás natural (inclusive o hidrogênio produzido da reforma a vapor), etanol, biodiesel, além da análise da geração e distribuição da eletricidade na matriz elétrica brasileira. Propõe-se o uso dos custos exergéticos unitários renováveis e não renováveis e as emissões de CO2 como indicadores para avaliar a intensidade exergética renovável e não renovável, o impacto ambiental e o desempenho termodinâmico no uso final. Este procedimento permite hierarquizar os diferentes processos de conversão de energia na produção e uso final de combustíveis veiculares, a fim de determinar as melhores opções para o setor de transporte. / Transportation sector is an example of economic activity that fundamentally depends on the supply chains of oil, natural gas and biofuels for its operation, as well as being a major consumer of primary energy in the country. Therefore, any improvement that could be achieved in the vehicle fuels production and end use processes, favorably affects both the use of energy resources and industry performance, as well as the environmental impact and the national economy. Accordingly, it is necessary to develop a methodology based on a suitable tool to evaluate the different routes of fuel production and end use, so that the main sources of energy degradation and the environmental impact can be determined and quantified. A valuable tool that serves that purpose is the extended exergy analysis, which provides an opportunity to quantify the total and non-renewable exergy requirements and overall efficiencies, and thereby pursue and prioritize the use of the most environmentally friendly sources of energy. Exergoeconomy, which attempts to rationally distribute the exergy cost among the several products of a single plant, uses the amount of exergy of each product as the basis for the distribution of exergy expended in the respective process. Thus, this work presents a comparative analysis of the production routes and end use of vehicles fuels derived from petroleum and natural gas (including hydrogen produced from methane steam reforming), ethanol, biodiesel, besides of the analysis of generation and distribution of electricity in the Brazilian electricity mix. Moreover, the renewable and non-renewable unit exergy costs and CO2 emissions are proposed as indicators, able to assess the renewable and non-renewable specific exergy consumption, the environmental impact and the thermodynamic performance of transportation sector. This procedure allows to hierarchize the exergy conversion processes in the production and end use of transportation fuels, in order to determine the best options for the transportation sector.
5

Comparação termodinâmica e ambiental (emissões de CO2) das rotas de produção e utilização de combustíveis veiculares derivados de petróleo e gás natural, biocombustíveis, hidrogênio e eletricidade (veículos elétricos). / Thermodynamics and environmental comparison (CO2 emissions) of production and end use routes of vehicle fuels, derived from petroleum, natural gas, biofuels, hydrogen and electricity (electric vehicles).

Daniel Alexander Flórez-Orrego 21 February 2014 (has links)
O setor de transporte é um exemplo de atividade econômica que depende fundamentalmente das cadeias produtivas do petróleo, gás natural e biocombustíveis para sua operação, além de ser um dos principais consumidores da energia primária do país. Portanto, qualquer melhoria nos processos de produção e uso final dos combustíveis veiculares, repercute favoravelmente tanto na utilização dos recursos energéticos e o desempenho do setor, quanto no impacto ambiental e na economia nacional. Nesse sentido, faz-se necessário o desenvolvimento de uma metodologia que permita avaliar as diferentes rotas de produção e uso final, para determinar as principais fontes de degradação da energia e quantificar o impacto ambiental por meio de uma ferramenta apropriada. Uma valiosa ferramenta é a análise exergética ampliada, a qual provê uma oportunidade de quantificar os requerimentos exergéticos totais e não renováveis e as eficiências globais e, desse modo, perseguir e priorizar o uso daquelas fontes de energia mais favoráveis e amigáveis com o meio ambiente. A exergoeconomia, que visa à distribuição racional dos custos exergéticos entre os diversos produtos de uma mesma planta, usa a quantidade de exergia de cada produto como base para a distribuição da exergia despendida no respectivo processo. Desta forma, neste trabalho se apresenta uma análise comparativa sobre as rotas de produção e uso final dos combustíveis derivados do petróleo e o gás natural (inclusive o hidrogênio produzido da reforma a vapor), etanol, biodiesel, além da análise da geração e distribuição da eletricidade na matriz elétrica brasileira. Propõe-se o uso dos custos exergéticos unitários renováveis e não renováveis e as emissões de CO2 como indicadores para avaliar a intensidade exergética renovável e não renovável, o impacto ambiental e o desempenho termodinâmico no uso final. Este procedimento permite hierarquizar os diferentes processos de conversão de energia na produção e uso final de combustíveis veiculares, a fim de determinar as melhores opções para o setor de transporte. / Transportation sector is an example of economic activity that fundamentally depends on the supply chains of oil, natural gas and biofuels for its operation, as well as being a major consumer of primary energy in the country. Therefore, any improvement that could be achieved in the vehicle fuels production and end use processes, favorably affects both the use of energy resources and industry performance, as well as the environmental impact and the national economy. Accordingly, it is necessary to develop a methodology based on a suitable tool to evaluate the different routes of fuel production and end use, so that the main sources of energy degradation and the environmental impact can be determined and quantified. A valuable tool that serves that purpose is the extended exergy analysis, which provides an opportunity to quantify the total and non-renewable exergy requirements and overall efficiencies, and thereby pursue and prioritize the use of the most environmentally friendly sources of energy. Exergoeconomy, which attempts to rationally distribute the exergy cost among the several products of a single plant, uses the amount of exergy of each product as the basis for the distribution of exergy expended in the respective process. Thus, this work presents a comparative analysis of the production routes and end use of vehicles fuels derived from petroleum and natural gas (including hydrogen produced from methane steam reforming), ethanol, biodiesel, besides of the analysis of generation and distribution of electricity in the Brazilian electricity mix. Moreover, the renewable and non-renewable unit exergy costs and CO2 emissions are proposed as indicators, able to assess the renewable and non-renewable specific exergy consumption, the environmental impact and the thermodynamic performance of transportation sector. This procedure allows to hierarchize the exergy conversion processes in the production and end use of transportation fuels, in order to determine the best options for the transportation sector.
6

Desempenho exergo-ambiental do processamento de petróleo e seus derivados. / Exergo-environmental performance of petroleum derived fuels processing.

Julio Augusto Mendes da Silva 08 March 2013 (has links)
O processamento de petróleo e seus derivados é analisado pela aplicação combinada e sistemática da Primeira e da Segunda Lei da Termodinâmica, análise exergética, permitindo a localização dos principais processos destruidores da capacidade de realização de trabalho ao longo da cadeia de processamento. Após a localização das irreversibilidades, diversas opções para melhoria dos processos são avaliadas. A exergia consumida nos processos é dividida em renovável e não renovável e posteriormente repartida, junto com as respectivas emissões de CO2, entre as diversas correntes de cada unidade de processamento. Para uma repartição racional dos fluxos exergéticos e de CO2, a análise exergoeconômica foi utilizada. Um sistema, que permite interações cíclicas entre a cadeia produtiva dos principais combustíveis utilizados no Brasil e a produção de eletricidade, foi elaborado a fim de permitir uma comparação entre os diversos combustíveis levando em consideração toda a cadeia produtiva. Esta comparação está fundamentada no consumo de exergia renovável e não renovável e nas emissões de CO2. Pode-se concluir que o coque de petróleo é o combustível que mais emite CO2, em seguida, encontram-se o carvão e a gasolina. O diesel hidrotratado vem após a gasolina, devido principalmente ao consumo de hidrogênio pelo hidrotratamento. Embora o diesel convencional emita mais SOx e NOx, este diesel exige menos exergia não renovável e emite menos CO2 que o diesel hidrotratado. O hidrogênio, se produzido da forma convencional (reforma a vapor de hidrocarbonetos leves), é o combustível mais intenso em exergia não renovável e com emissão de CO2 próxima ao valor da gasolina e maior que o valor obtido para o diesel convencional. O etanol se mostra uma boa alternativa ao uso dos derivados de petróleo, mesmo considerando configurações típicas para as usinas sucroalcooleiras. / The oil processing is analyzed by the combined and systematic application of the First and Second Laws of Thermodynamics, exergy analysis, allowing the location of the processes responsable for the main destructions of work capability along the processing chain. After the location of irreversibilities, several options for improving processes efficiency are evaluated. The exergy consumed in the processes is divided into renewable and non-renewable and then distributed, along with their CO2 emissions, among the various currents of each processing unit. For a rational distribution of the exergy and CO2 flows, exergoeconomy analysis takes place. A system that allows cyclical interactions between the productive chain of the main fuels used in Brazil and electricity production, is designed to allow the comparison among different fuels taking into account the entire production chain. This comparison is based on renewable and non-renewable exergy consumption and CO2 emissions. It can be concluded that the petroleum coke is the fuel that emits more CO2 followed by coal and gasoline. The hydrotreated diesel comes after gasoline, mainly due to the consumption of hydrogen for hydrotreating. Although conventional diesel emit more NOx and SOx, this diesel requires less non-renewable exergy and emits less CO2 than hydrotreated diesel. Hydrogen, if produced in the conventional way (steam reforming of light hydrocarbons) is the fuel most intense in nonrenewable exergy consumption and has CO2 emission near the value of gasoline and higher than the value obtained for conventional diesel. Ethanol is a good alternative to the use of petroleum derived fuels, even considering typical configurations for sugarcane mills.

Page generated in 0.0403 seconds