Spelling suggestions: "subject:"exosomes"" "subject:"hexosomes""
111 |
Roles of Endothelial Cell Heat Shock Protein A12B and β-glucan, a reagent for trained Immunity in the Regulation of Inflammation in SepsisTu, Fei 01 August 2020 (has links)
Sepsis is dysregulated host immune response to infection causing life-threatening organ dysfunction. Endothelial cell dysfunction and uncontrolled inflammatory responses are two contributors for sepsis-induced mortality. The crosstalk between endothelial and immune cells plays a critical role in the pathophysiology of sepsis. Therefore, understanding the mechanism of interaction between endothelial and immune cells will provide novel information to develop therapeutic strategies for sepsis.
Pathogen associated moleculear patterns (PAMPs) and/or damage associated molecular patterns (DAMPs) produced during sepsis, activate endothelial cells to increase the expression of adhesion molecules, attracting immune cell infiltration into the tissues. Uncontrolled inflammatory responses during the early phase of sepsis contribute to organ failure and lethality. Over 100 clinical trials, targeting inflammatory responses in sepsis, have failed in the past three decades. Thereby, developing novel therapeutic strategies for sepsis are urgent.
Heat shock protein A12B (HSPA12B), as one member of HSP70 family, predominately expressed in the endothelial cells, plays important roles in many pathophysiological processes. Currently, we observed endothelial cell specific HSPA12B deficiency (HSPA12B-/-) exacerbates mortality in sepsis induced by cecal ligation puncture (CLP). HSPA12B-/- septic mice exhibits increased expressions of adhesion molecule and infiltrated macrophages in the myocardium and activated macrophages in the peritoneal cavity. In vitro studies show that HSPA12B could be secreted from endothelial cells via exosome. HSPA12B carried by exosomes can be uptaken by macrophages to downregulate macrophage NF-kB activation and pro-inflammatory cytokine production.
Trained immunity, induced by β-glucan, causes immune memory in innate immune cells, with an altered response towards another challenge. We have found that mice received β-glucan seven days before CLP sepsis exhibit attenuated mortality with decreased pro-inflammatory responses. We found that β-glucan significantly increased the levels of HSPA12B in endothelial cells and endothelial exosomes. β-glucan induced endothelial exosomes markedly suppress macrophage NF-kB activation and pro-inflammatory responses.
The current data suggests that HSPA12B plays a novel role in the regulation of immune and inflammatory responses and that HSPA12B could be an important mediator for the crosstalk between endothelial cells and macrophages during sepsis. β-glucan regulates endothelial cell functions and immune/inflammatory responses, thus improving survival outcome in CLP sepsis.
|
112 |
Implication des biomarqueurs NTRK2 et CHI3L1 dans la nouvelle classification histo-moléculaire des gliomes / Implication of two biomarkers NTRK2 and CHI3L1 in the new histo-molecular classification of gliomasDeluche Mouricout, Elise 21 December 2018 (has links)
Les gliomes, tumeurs cérébrales primaires du système nerveux central, sont souvent de pronostic défavorable, d'autant plus que l'absence de critères indiscutables pour les identifier rend leur diagnostic et leur prise en charge particulièrement difficiles. L’analyse conjointe, d’une cohorte française de 64 patients porteurs de gliomes et d’une cohorte internationale de 671 patients issus du TCGA, a permis de mettre en évidence deux groupes pronostiques constitués par un panel d’expression différentielle de 26 gènes (p = 0,007). Cette stratification en deux groupes pronostiques a été confirmée quels que soient le grade et le groupe moléculaire de la tumeur (p < 0,0001). Nous avons établi une nouvelle stratégie diagnostique à partir de la classification moléculaire des gliomes en intégrant deux biomarqueurs pronostiques CHI3L1 et NTRK2. L’analyse multivariée confirme que ces biomarqueurs sont indépendants du statut IDH et du grade tumoral. Si nous avons mis en évidence par l’analyse protéique de CHI3L1 une concordance avec les transcrits, les résultats divergent pour TrkB. Ainsi, une expression élevée de TrkB et son corécepteur p75NTR serait liée à l’agressivité tumorale indépendamment du statut IDH. Enfin, TrkB et p75NTR sont présents aussi bien dans les exosomes issus du plasma de témoins sains et de patients atteints de gliomes mais leur expression augmente en fonction de l’agressivité de la tumeur / Gliomas, primary brain tumours of the central nervous system, are often of poor prognosis.The absence of clear criteria to identify them makes their diagnosis and management particularly difficult. The combined analysis of a cohort of 64 glioma patients and an international cohort of 671 patients from the TCGA revealed two prognostic groups of a differential expression panel of 26 genes (p = 0.007). This stratification into two prognostic groups was confirmed independently of the grade and molecular group of the tumor (p <0.0001). We have established a new diagnostic strategy based on the molecular classification of gliomas by integrating two prognostic biomarkers CHI3L1 and NTRK2. Multivariate analysis confirms that these biomarkers are independent of IDH status and tumor grade.While we have demonstrated by the protein analysis of CHI3L1 concordance with the transcripts, the results are different for TrkB. Therefore, a high expression of TrkB and its p75NTR co-receptor would be associated with tumor aggressiveness regardless of IDH status. Lastly, TrkB and p75NTR are present in exosomes from plasma of healthy controls and glioma patients, but their expression increases with the aggressiveness of tumor.
|
113 |
BET bromodomain proteins control breast cancer aggressiveness promoted by adipocyte-derived exosomesHoang, Thang 20 June 2020 (has links)
Cells can release lipid bilayer vesicles of endosomal and plasma membrane origin, which are known as exosomes or extracellular vesicles (EVs). EVs contain diverse shuttling lipids, RNA and transmembrane proteins, and play an important role in communicating between neighboring or distant cells. Breast cancer is the most commonly diagnosed malignancy, with over 2 million new cases in 2018, and is the leading cause of cancer mortality in women all over the world. Some observational studies have suggested that breast cancer is more likely to develop among women who have type 2 diabetes; the association is clear in postmenopausal women. Moreover, women with type 2 diabetes diagnosed before, at the same time, or after breast cancer diagnosis, have decreased overall survival compared to women without diabetes.
The most recent medical studies provide more clues as to why breast cancer is more common and has poorer prognosis in type 2 diabetes patients, by pointing out the role of insulin-resistant adipocytes in the etiopathology. Here, we demonstrate how insulin-resistant adipocytes engage crosstalk with breast cancer cells through EVs in the microenvironment and drive the tumor cells to be more metastatic and aggressive. These progression mechanisms and the effects of insulin-resistant adipocytes on breast cancer cells require Bromodomain and ExtraTerminal (BET) proteins – an important epigenetic pathway. Targeting this pathway may help reduce morbidity and mortality of women with breast cancer and type 2 diabetes.
|
114 |
Endothelial HSPA12B Exerts Protection Against Sepsis-Induced Severe Cardiomyopathy via Suppression of Adhesion Molecule Expression by miR-126Zhang, Xia, Wang, Xiaohui, Fan, Min, Tu, Fei, Yang, Kun, Ha, Tuanzhu, Liu, Li, Kalbfleisch, John, Williams, David, Li, Chuanfu 29 April 2020 (has links)
Heat shock protein A12B (HSPA12B) is predominately expressed in endothelial cells (ECs) and has been reported to protect against cardiac dysfunction from endotoxemia or myocardial infarction. This study investigated the mechanisms by which endothelial HSPA12B protects polymicrobial sepsis–induced cardiomyopathy. Wild-type (WT) and endothelial HSPA12B knockout (HSPA12B–/–) mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP). Cecal ligation and puncture sepsis accelerated mortality and caused severe cardiac dysfunction in HSPA12B–/– mice compared with WT septic mice. The levels of adhesion molecules and the infiltrated immune cells in the myocardium of HSPA12B–/– septic mice were markedly greater than in WT septic mice. The levels of microRNA-126 (miR-126), which targets adhesion molecules, in serum exosomes from HSPA12B–/– septic mice were significantly lower than in WT septic mice. Transfection of ECs with adenovirus expressing HSPA12B significantly increased miR-126 levels. Increased miR-126 levels in ECs prevented LPS-stimulated expression of adhesion molecules. In vivo delivery of miR-126 carried by exosomes into the myocardium of HSPA12B–/– mice significantly attenuated CLP sepsis increased levels of adhesion molecules, and improved CLP sepsis–induced cardiac dysfunction. The data suggest that HSPA12B protects against sepsis-induced severe cardiomyopathy via regulating miR-126 expression which targets adhesion molecules, thus decreasing the accumulation of immune cells in the myocardium.
|
115 |
A Novel Communication Mechanism Between the Presynapse and Postsynapse Through Exosomes: A DissertationKorkut, Ceren 10 August 2012 (has links)
The minimal element of the nervous system, the synapse, is a plastic structure that has the ability to change in response to various internal and external factors. This property of the synapse underlies complex behaviors such as learning and memory. However, the exact molecular and cellular mechanisms involved in this process are not fully understood. To understand the mechanisms that regulate synapse development and plasticity I took advantage of a powerful model system, the Drosophila larval neuromuscular junction (NMJ). In this system, both anterograde and retrograde signaling pathways critical for coordinated synapse development and plasticity have been documented.
An anterograde WNT/Wingless (Wg) signaling pathway plays a crucial role in both developmental and activity-dependent synaptic plasticity at the NMJ. Presynaptic motor neuron terminals secrete highly hydrophobic Wg, which travels to relatively distant postsynaptic sites where it activates a signal transduction pathway required for postsynaptic development. In the first half of my thesis I unraveled a previously unrecognized cellular mechanism by which Wg is shuttled to postsynaptic sites. In this mechanism Wg rides on secreted microvesicles or exosomes that contain a dedicated WNT secretion factor, the WNT-binding transmembrane protein, Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt). To our knowledge, this was the first in vivo study demonstrating that neurons release exosomes, which are involved in trans-synaptic communication. Moreover, this was the first study showing that hydrophobic WNT signals are transported to the extracellular space on exosomes to reach WNT-receptor containing target cells.
Retrograde signals are also critical during development and plasticity of synaptic connections. These signals function to adjust the activity of presynaptic cells according to postsynaptic cell outputs, to maintain synaptic function within a dynamic range. However, the mechanisms that trigger the release of retrograde signals and the role of presynaptic cells in this signaling event are not clear. In the second half of my thesis, I provided evidence that a crucial component of retrograde signaling at the fly NMJ, Synaptotagmin-4 (Syt4), is transmitted to the postsynaptic cell through anterograde delivery of Syt4 via exosomes. Drosophila Syt4 is known to reside on postsynaptic vesicles at the NMJ and function as a calcium sensor to release a retrograde signal upon synaptic activity. This event is required for coordinated maturation of the presynaptic terminal. We demonstrated that retrograde Syt4 function in postsynaptic muscle is required for activity-dependent presynaptic growth. However, surprisingly, Syt4 protein was not synthesized in postsynaptic muscles. Instead, Syt4 was produced in motorneurons and transferred to postsynaptic muscle cells via exosome secretion by presynaptic cells. The above study provided evidence for a presynaptic control of postsynaptic retrograde signaling through exosomal transfer of an essential retrograde signaling component.
In summary, this body of work reveals a novel mechanism of trans-synaptic communication through exosomes. While intercellular communication through exosomes had been demonstrated during antigen presentation in the immune system, our studies were the first to substantiate this mode of communication in the nervous system. Thus, these studies provide a significantly deeper and novel understanding of the mechanisms underlying synapse development and plasticity.
|
116 |
Neural recovery after cortical injury: effects of MSC derived exosomes in the cervical spinal cordCalderazzo, Samantha 11 June 2019 (has links)
Stroke is the leading cause of long-term disability costing the United States (US) health care system 34 billion dollars. However, stem cell based therapies have been shown to improve recovery after cortical injury by enhancing neural recovery and modulating immune responses (Lambertsen, Finsen, & Clausen, 2018; Orczykowski et al., 2018; Stonesifer et al., 2017). Specifically, reorganization of the motor circuit at the level of the spinal cord has been shown to improve functional recovery after injury (Christoph Wiessner; Weidner et al., 2001; Lee et al., 2004; Zai et al., 2009). In our study we used a non-human primate (NHP) model to study the neural recovery after cortical injury similar to damage from an ischemic stroke in the motor cortex with or without a systemic treatment of mesenchymal stem cell derived (MSCd) exosomes. We find a robust recovery in motor function within the first few weeks after injury including improved grasp patterns and faster retrieval times during behavioral tasks. Additionally, assessment of the cervical spinal cord (CSC) reveals decreased levels of sprouting axons from ipsilesional corticospinal tract (CST) and MAP2+ synapses in the contralesional ventral horn at 14 weeks post-injury, which correlates with improved retrieval latencies. We hypothesize that MSCd exosomes may encourage an earlier switch to anti-inflammatory and repair processes that reduces secondary damage in the cortex resulting in earlier pruning of axon collaterals and reducing the need for compensatory mechanisms of the spinal cord at 14 weeks post injury.
|
117 |
Exosomes Released from Multiple Myeloma Cells Influence the Angiogenic Function of Endothelial Cells by Regulating MicroRNA-29bYe, Qinmao 21 August 2018 (has links)
No description available.
|
118 |
Neuroglobin and its Role in the Recovery of Neuronal Cells in Hypoxic Conditions Using Hypoxia Inducible Factor– 1Shah, Riya 01 January 2021 (has links)
Stroke is the world's leading cause of adult disability, caused by lack of oxygen and nutrients to the brain due to a blood clot in a major artery. This leads to ischemic damage of neuronal cells that leads to paralysis, motor, and speech deficits. While most stroke therapies aim at removing or reducing the blood clots in the brain, few treatments target cell damage. Neuroglobin (NGB) is a protein in the brain that is able to aid in neuroprotection following oxidative stress. Hypoxia-Inducible Factor-1 (HIF-1) is a transcription factor that serves as a marker for cell recovery after hypoxia or low oxygen levels. Exosomes are microscopic extracellular vesicles that can help deliver proteins across the blood-brain barrier. This thesis focuses on finding a correlation between exosomal-delivered neuroglobin to ischemic cells and the regulation of HIF-1 in order to develop an innovative treatment using exosomes. The specific aims of this thesis are as follows:
Aim 1: Package NGB in exosomes of healthy cell
The XPAK-NGB plasmid will be used to transfect NGB DNA into wild-type human embryonic kidney (HEK-293 cell line) cells. Exosomes will be harvested from the spent media. The exosomes will be analyzed to ensure that the protein is packaged inside the exosomes.
Aim 2: Determine the limit of hypoxic conditions and effects of NGB on damaged cells
A literature review will be performed to determine the ideal concentration of H2O2 for the survival of neuronal cells. This will include the composition of hypoxia as well as the length of time that cells can be exposed to and remain viable.
Aim 3: Correlate NGB concentration and HIF-1 concentration
Another literature review will determine the specific markers of NGB and HIF-1.
|
119 |
Parasympathetic Nerve Derived Exosomes Inhibit Hyperglycemia Induced Apoptosis in Cardiomyoblast CellsSingla, Reetish K 01 January 2018 (has links) (PDF)
Diabetic cardiomyopathy involves both forms of cardiac cell cell death such as apoptosis and necrosis. However, this remains unknown whether hyperglycemia induced apoptosis in the cell culture system is inhibited by parasympathetic nerve derived exosomes. We isolated parasympathetic and sympathetic nerves and derived exosomes. We developed hyperglycemia induced apoptosis in H9c2 cells. H9c2 cells were divided into 4 groups: 1) Control, 2) H9c2+ Glucose 100 mmol, 3) H9c2+ Glucose +parasympathetic-exo, 4) H9c2+ Glucose+sympathetic-exo. We determined cell proliferation and viability with MTT assay kit and apoptosis with TUNEL staining and cell death detection ELISA kit. Data was further confirmed with pro-apoptotic proteins caspase-3 and BAX and anti-apoptotic protein Bcl2. High glucose exposed H9c2 cells significantly reduced cell viability which is improved by parasympathetic-exo but not by sympathetic-exo. Increased apoptosis in hyperglycemia in H9c2 cells confirmed with TUNEL staining and cell death ELISA was significantly (p
|
120 |
Stress response of continued intensification of industrial production processesPlencner, Eric Michael 24 October 2022 (has links)
No description available.
|
Page generated in 0.0583 seconds