• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relationships between feral goats (Capra hircus) and domestic sheep (Ovis aries) with reference to exotic disease transmission

Fleming, Peter J S, n/a January 2004 (has links)
Merino sheep are the most numerous domestic livestock in Australia and feral goats are wide-spread and locally abundant in many of the regions where sheep are grazed. Foot and mouth disease (FMD) is a disease of ungulates that causes severe economic hardship to countries where outbreaks occur or where it has become endemic. In India, Africa, Greece and recently the United Kingdom and Eire, sheep and goats have been implicated in the spread and maintenance of FMD. In Australia, there are contingency plans (AUSVETPLANS) for dealing with an outbreak of FMD. Included in those plans are strategies for control of the disease in feral ungulates including feral pigs and feral goats. Modelling has provided assistance in developing strategies to combat outbreaks in feral pigs and for controlling outbreaks in domestic livestock. No models have been constructed to aid decisions about controlling FMD in feral goats where they co-occur with merino sheep. In Australia, the greatest densities of free-ranging feral goats and domestic livestock occur in the high rainfall zone (> 500 mm mean annual rainfall) along the eastern tablelands and adjacent slopes of the Great Dividing Range. Previous studies of feral goat biology, population dynamics and behaviour in Australia have concentrated on arid and semi-arid zones or on islands. Interactions between free ranging feral goats and merino sheep have not previously been studied in the high rainfall zone. My study investigated the ecological and behavioural characteristics of feral goats and their interactions with sympatric merino sheep at a high rainfall site in central eastern New South Wales. The population dynamics, biological and behavioural parameters of feral goats and sheep were then used to model FMD in such an environment. Deterministic temporal models and a new spatial stochastic model were used. Of particular interest were the rates of contact within and between subgroups of feral goats (termed herds and mobs), within and between subgroups of merino sheep (termed flocks and mobs), and between subgroups of the two species. Feral goats at the study site were found to be numerous (mean density = 34.94 goats km-2, from aerial surveys), in good condition, fecund and had high adult survival and low annual adult mortality (survival= 0.81�1.00) in the absence of harvesting and hunting. They had an observed instantaneous rate of increase of 0.112 per year. Annual rate of increase was similar to other sites in Australia without sustained harvesting pressure. Home ranges were small for both males (3.754 km², s.e. = 0.232, n = 116 goats) and females (2.369 km², s.e. = 0.088, n = 241 goats). From this and other Australasian studies, an inverse power function was found to be an excellent descriptor of the relationship between mean annual rainfall and female home range size. A resource selection function was fitted in a geographic information system to observational data of feral goats. The habitat selection of feral goats included a preference for wooded vegetation on eastern and north eastern aspects at higher elevations. The resource selection function was also used to set the probabilities of occurrence of feral goats in 1 ha areas of the landscape and these probabilities were used to generate heterogeneity in a spatial model of foot and mouth disease virus (FMDV) transmission. Daily per capita contact rates were estimated from observed contacts in the field where a contact between individuals was recognised when one approached within 1 body length ([approx] 1m) of another. The contacts between feral goats within herds were frequent and occurred at a rate of 6.96 (s.e. = 1.27) goat�goat contacts day-1. Sheep to sheep contacts were slightly less frequent (4.22 sheep�sheep contacts day-1, s.e. = 0.65) but both estimates were most likely negatively biased because of observer errors in estimating the number of individual animals coming in contact with observation subject (focal) animals. Contacts between herds of feral goats were not common and those between adjacent populations were fewer than 1 per year. In sheep, flock to flock contact was largely governed by husbandry practices and occurred at a mean daily rate of 0.0014 flock�flock contacts. Contacts between sheep and feral goats were less frequent but nonetheless common (2.82 goat�sheep contacts day-1, s.e. = 0.40). In feral goats the size of the mob in which focal goats were observed was found to be the most important factor in determining contact rates between individuals and a counter-intuitive inverse relationship was identified. Contacts were heterogeneous and density was not an important determinant of contact rates implying that, because of the uniformly high densities at the site, saturation had occurred. The temporal models of FMDV transmission showed that the rate of contact within and between species was such that FMD was predicted to spread rapidly throughout an infected herd or flock. Control strategies of intense culling of feral goats at the population level were predicted to allow the disease to persist at low prevalence, with a small peak corresponding to the annual lambing pulse in sheep. However, the same level of control (>90% reduction) at the herd level was predicted to eliminate FMD and allow the safe reintroduction of sheep. Extreme control that left very small groups (<3 individuals) may be counter productive because such small groups are likely to join the reintroduced sheep in an effort by the goats to meet gregarious urges. The spatial model was more reassuring. It predicted that FMD would die out in a mixed sheep and feral goat population in less than 90 days because of the low rate of herd to herd contact and herd to flock contact. For similar environments, the contingency planning consequences are that an outbreak of FMD introduced into feral goats from sympatric sheep is likely to be containable by removing all the sheep, determining the extent and likely range of the feral goats, then removing a substantial proportion of or eradicating each herd. Feral goats, being relatively sedentary, are unlikely to spread to adjacent populations and the disease will die out through lack of contact between herds and populations. Because feral goat home ranges overlap and are centred on one or two small catchments, a containment ring of feral goat control, set to encompass the home range of a target herd and that of adjacent herds, should be adequate to limit spread of FMD.
2

Élaboration d'une méthode semi-automatique pour l'identification et le traitement des signaux d'émergence pour la veille internationale sur les maladies animales infectieuses / Elaboration of a Semi-Automatic Method for Identification and Analysis of Signals of Emergence of Animal Infectious Diseases at International Level

Arsevska, Elena 31 January 2017 (has links)
La veille en santé animale, notamment la détection précoce de l'émergence d'agents pathogènes exotiques et émergents à l'échelle mondiale, est l'un des moyens de lutte contre l'introduction de ces agents pathogènes en France.Récemment, il y a eu une réelle prise de conscience par les autorités sanitaires de l'utilité de l'information non-structurée concernant les maladies infectieuses publiée sur le Web.C'est dans ce contexte que nous proposons un outil de veille basé sur une méthode de fouille de textes pour la détection, collecte, catégorisation et extraction de l'information sanitaire à partir des donnés textuelles non structurées (articles médias) publiées sur le Web.Notre méthode est générique. Toutefois, pour l'élaborer, nous l'appliquons à cinq maladies animales infectieuses exotiques : la peste porcine africaine, la fièvre aphteuse, la fièvre catarrhale ovine, la maladie du virus Schmallenberg et l'influenza aviaire.Nous démontrons que des techniques de fouille de textes, complétées par les connaissances d'experts du domaine, sont la fondation d'une veille sanitaire du Web à la fois efficace et réactive pour détecter des émergences de maladies exotiques au niveau international.Notre outil sera utilisé par le dispositif de veille sanitaire internationale en France, et facilitera la détection précoce de signaux de dangers sanitaires émergents dans les articles médias du Web. / Monitoring animal health worldwide, especially the early detection of outbreaks of emerging and exotic pathogens, is one of the means of preventing the introduction of infectious diseases in France.Recently, there is an increasing awareness among health authorities for the use of unstructured information published on the Web for epidemic intelligence purposes.In this manuscript we present a semi-automatic text mining approach, which detects, collects, classifies and extracts information from non-structured textual data available in the media reports on the Web. Our approach is generic; however, it was elaborated using five exotic animal infectious diseases: african swine fever, foot-and-mouth disease, bluetongue, Schmallenberg, and avian influenza.We show that the text mining techniques, supplemented by the knowledge of domain experts, are the foundation of an efficient and reactive system for monitoring animal health emergence on the Web.Our tool will be used by the French epidemic intelligence team for international monitoring of animal health, and will facilitate the early detection of events related to emerging health hazards identified from media reports on the Web.

Page generated in 0.0563 seconds