• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos / Cohomology and stochastics properties of expanding maps and lipschitzians observables

Lima, Amanda de 20 March 2007 (has links)
Provamos o Teorema do Limite Central para transformações expansoras por pedaços em um intervalo e observáveis com variação limitada. Utilizamos a abordagem desenvolvida por R. Rousseau-Egele, como apresentada por A. Broise. O método da demonstração se baseia no estudo de pertubações do operador de transferência de Ruelle-Perron-Frobenius. Uma contribuição original é dada no último capítulo, onde provamos que, para transformações markovianas expansoras, todos os observáveis não constantes, contínuos e com variação limitada não são infinitamente cohomólogos à zero, generalizando um resultado de Bamón, Rivera-Letelier, Urzúa and Kiwi para observáveis lipschitzianos e transformações \'z POT. n\' . A demonstração se baseia na teoria dos operadores de Ruelle-Perron-Frobenius desenvolvida nos capítulos anteriores / We prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
2

Transversal families of piecewise expanding maps / Famílias transversais de transformações expansoras por pedaços

Lima, Amanda de 07 May 2015 (has links)
Let t:[a,b] → ft be a C2 family of \"good\" C4 e piecewise expanding unimodal maps, with a critical point c, that is transversal to the topological classes of such maps. Given a lipchitzian observable ∅, consider the function ℛ∅(t)=∫∅dµt, where µt is the unique bsolutely continuous invariant probability of ft. We show a central limit theorem for the modulus of continuity of ℝ∅, that is limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converges to 1/(2π)½ ∫y-∞e-s2/2ds. Now, let us consider a C2+ε expanding map f : 𝕊1 → 𝕊1 and a C1+ε periodic function v : 𝕊1 → ℝ. We show that the unique bounded solution of the twisted cohomological equation v(x) = α(f(x)) - Df(x)α(x) is either of class C1+ε or nowhere differentiable. We also prove that if α is nowhere differentiable, them the modulus of continuity of α satisfies a central limit theorem, that is, there is α &gt 0 such that limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, where µ is the absolutely continuous invariant probability of f. / Seja t:[a,b] → ft uma família C2 \"boa\" de transformações unimodais expansoras por pedaços com um ponto crítico c, que é transversal às classes topológicas de tais transformações. Dado um observável lipschitziano ∅, considere a função ℛ∅(t)=∫∅dµt, onde µt é a única probabiidade invariante absolutamente contínua de ft. Mostramos um teorema do limite central para o módulo de continuidade de ℝ∅, isto é limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converge para 1/(2π)½ ∫y-∞e-s2/2ds. Vamos considerar agora f : 𝕊1 → 𝕊1 uma transformação expansora de classe C2+ε e v : 𝕊1 → ℝ uma função periódica de classe C1+ε. Mostramos que a única solução limitada da equação cohomológica torcida v(x) = α(f(x)) - Df(x)α(x) ou é de classe C1+ε ou não possui derivada em ponto algum. Mostramos também que se α não possui derivada em ponto algum, então o módulo de continuidade de α satisfaz um teorema do limite central, isto é, existe α &gt 0 tal que limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, onde µ é a probabilidade invariante absolutamente contínua associada a f.
3

Medidas SRB para Atratores Hiperbólicos / SRB Measures for Hyperbolic Attractors

CARVALHO, Péricles Rafael Pavão 02 May 2017 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-07-17T12:51:37Z No. of bitstreams: 1 Pericles Carvalho.pdf: 1223900 bytes, checksum: f4ce61e56294f3bb3b3e192efa2993f2 (MD5) / Made available in DSpace on 2017-07-17T12:52:05Z (GMT). No. of bitstreams: 1 Pericles Carvalho.pdf: 1223900 bytes, checksum: f4ce61e56294f3bb3b3e192efa2993f2 (MD5) Previous issue date: 2017-05-02 / This paper begins with the definition of SRB measures, and the introduction of several concepts in ergodic theory necessary for the development of the presented results. We prove the existence and uniqueness of SRB measures for uniformly expanding transformations in compact connected manifolds whose Jacobian is H¨older continuous. Then, we present the definition of hyperbolic sets, hyperbolic attractors and their respective fundamental properties. As a main result, we prove the existence of SRB measures for hyperbolic attractors contained in compact manifolds, and its uniqueness if the hyperbolic attractor is transitive. First, it is shown the existence of invariant measures absolutely continuous along the unstable foliation. Then, we note that the restriction of this measure over certain subsets have the SRB property. Using the transitivity of the hyperbolic attractor, it is shown that there exists a unique subset such that this restriction is an SRB measure. We conclude that the system supports a unique SRB measure. / Este trabalho inicia-se com a definição de medida SRB, e a apresentação de diversos conceitos da teoria ergódica importantes para o desenvolvimento dos resultados apresentados. É demonstrada a existência e unicidade de medidas SRB para transformações expansoras em variedades compactas e conexas cujo jacobiano é Holder. Em seguida, apresenta-se a definição de conjuntos hiperbólicos, atratores hiperbólicos e suas respectivas propriedades fundamentais. Como resultado principal, é demonstrada a existência de medidas SRB para atratores hiperbólicos, bem como sua unicidade para o caso de atratores hiperbólicos transitivos, ambos dentro de variedades compactas. Primeiramente, é mostrado que existem medidas invariantes absolutamente contínuas ao longo da folheação instável. Em seguida, verifica-se que a restrição desta medida sob determinados conjuntos possuem a propriedade SRB. Utilizando a transitividade do atrator hiperbólico, mostra-se que existe um único conjunto tal que esta restrição seja uma medida SRB. Conclui-se que o sistema admite uma única medida SRB.
4

Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos / Cohomology and stochastics properties of expanding maps and lipschitzians observables

Amanda de Lima 20 March 2007 (has links)
Provamos o Teorema do Limite Central para transformações expansoras por pedaços em um intervalo e observáveis com variação limitada. Utilizamos a abordagem desenvolvida por R. Rousseau-Egele, como apresentada por A. Broise. O método da demonstração se baseia no estudo de pertubações do operador de transferência de Ruelle-Perron-Frobenius. Uma contribuição original é dada no último capítulo, onde provamos que, para transformações markovianas expansoras, todos os observáveis não constantes, contínuos e com variação limitada não são infinitamente cohomólogos à zero, generalizando um resultado de Bamón, Rivera-Letelier, Urzúa and Kiwi para observáveis lipschitzianos e transformações \'z POT. n\' . A demonstração se baseia na teoria dos operadores de Ruelle-Perron-Frobenius desenvolvida nos capítulos anteriores / We prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
5

Transversal families of piecewise expanding maps / Famílias transversais de transformações expansoras por pedaços

Amanda de Lima 07 May 2015 (has links)
Let t:[a,b] → ft be a C2 family of \"good\" C4 e piecewise expanding unimodal maps, with a critical point c, that is transversal to the topological classes of such maps. Given a lipchitzian observable ∅, consider the function ℛ∅(t)=∫∅dµt, where µt is the unique bsolutely continuous invariant probability of ft. We show a central limit theorem for the modulus of continuity of ℝ∅, that is limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converges to 1/(2π)½ ∫y-∞e-s2/2ds. Now, let us consider a C2+ε expanding map f : 𝕊1 → 𝕊1 and a C1+ε periodic function v : 𝕊1 → ℝ. We show that the unique bounded solution of the twisted cohomological equation v(x) = α(f(x)) - Df(x)α(x) is either of class C1+ε or nowhere differentiable. We also prove that if α is nowhere differentiable, them the modulus of continuity of α satisfies a central limit theorem, that is, there is α &gt 0 such that limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, where µ is the absolutely continuous invariant probability of f. / Seja t:[a,b] → ft uma família C2 \"boa\" de transformações unimodais expansoras por pedaços com um ponto crítico c, que é transversal às classes topológicas de tais transformações. Dado um observável lipschitziano ∅, considere a função ℛ∅(t)=∫∅dµt, onde µt é a única probabiidade invariante absolutamente contínua de ft. Mostramos um teorema do limite central para o módulo de continuidade de ℝ∅, isto é limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converge para 1/(2π)½ ∫y-∞e-s2/2ds. Vamos considerar agora f : 𝕊1 → 𝕊1 uma transformação expansora de classe C2+ε e v : 𝕊1 → ℝ uma função periódica de classe C1+ε. Mostramos que a única solução limitada da equação cohomológica torcida v(x) = α(f(x)) - Df(x)α(x) ou é de classe C1+ε ou não possui derivada em ponto algum. Mostramos também que se α não possui derivada em ponto algum, então o módulo de continuidade de α satisfaz um teorema do limite central, isto é, existe α &gt 0 tal que limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, onde µ é a probabilidade invariante absolutamente contínua associada a f.
6

Stochastic Stability of Partially Expanding Maps via Spectral Approaches / スペクトル解析による部分拡大写像の確率安定性について

Nakano, Yushi 25 May 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第19200号 / 人博第741号 / 新制||人||178(附属図書館) / 27||人博||741(吉田南総合図書館) / 32192 / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 宇敷 重廣, 教授 森本 芳則, 准教授 木坂 正史 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
7

Théorèmes limites dans l'analyse statistique des systèmes dynamiques / Limit theorems in the statistical analysis of dynamical systems

Abdelkader, Mohamed 30 November 2017 (has links)
Dans cette thèse nous étudions les théorèmes limites dans l’analyse statistique dessystèmes dynamiques. Le premier chapitre est consacré aux notions des bases des systèmesdynamiques ainsi que la théorie ergodique. Dans le deuxième chapitre nous introduisonsun cadre fonctionnel abstrait pour lequel la version quenched du théorème de la limitecentrale (TLC) en dimension 1 pour les systèmes dynamiques uniformément dilatantsest satisfaite sous une condition de validité nécessaire et suffisante. Le troisième chapitreest consacré au principe d’invariance presque sûr (PIPS) pour les application aléatoiresdilatantes par morceaux. Nous présentons certaines hypothèses sous lesquelles le (PIPS)est vérifié en utilisant la méthode d’approximation des martingales de Cuny et Merlèvede.Nous étudions aussi le théorème de Sprindzuk et ses conséquences. Nous établissons dansle chapitre quatre la décroissance des corrélations pour les systèmes dynamiques aléatoiresuniformément dilatants par la méthode de couplage en dimension 1. Nous terminons cetravail par une présentation des concepts de base de la théorie des mesures et probabilitéset une présentation de l’espace des fonctions à variation bornée. / In this thesis we study the limit theorems in the statistical analysis of dynamicalsystems. The first chapter is devoted to the basic notions in dynamical systems as well asthe ergodic theory. In the second chapter we introduce an abstract functional frameworkunder which the quenched version of the central limit theorem (CLT) in dimension 1for uniformly expanding dynamic systems is satisfied under a necessary and sufficientcondition validity. The third chapter is devoted to the almost sure invariance principle(ASIP) for random piecewise expanding maps. We present some hypotheses under whichthe (ASIP) is verified using the method of approximation of the martingales of Cuny andMerlèvede. We also study the Sprindzuk theorem and its consequences. In chapter four,we define the decay of correlations for the random dynamical systems uniformly expandingby the coupling method in dimension 1. We finish this work with a presentation of thebasic concepts of the theory of measures and probabilities and a presentation of the spaceof functions with bounded variation.
8

Viana maps and limit distributions of sums of point measures

Schnellmann, Daniel 17 December 2009 (has links) (PDF)
This thesis consists of five articles mainly devoted to problems in dynamical systems and ergodic theory. We consider non-uniformly hyperbolic two dimensional systems and limit distributions of point measures which are absolutely continuous with respect to the Lebesgue measure. Let $f_{a_0}(x)=a_0-x^2$ be a quadratic map where the parameter $a_0\in(1,2)$ is chosen such that the critical point $0$ is pre-periodic (but not periodic). In Papers A and B we study skew-products $(\th,x)\mapsto F(\th,x)=(g(\th),f_{a_0}(x)+\al s(\th))$, $(\th,x)\in S^1\times\real$. The functions $g:S^1\to S^1$ and $s:S^1\to[-1,1]$ are the base dynamics and the coupling functions, respectively, and $\al$ is a small, positive constant. Such quadratic skew-products are also called Viana maps. In Papers A and B we show for several choices of the base dynamics and the coupling function that the map $F$ has two positive Lyapunov exponents and for some cases we further show that $F$ admits also an absolutely continuous invariant probability measure. In Paper C we consider certain Bernoulli convolutions. By showing that a specific transversality property is satisfied, we deduce absolute continuity of the to these Bernoulli convolutions associated distributions. In Papers D and E we consider sequences of real numbers in the unit interval and study how they are distributed. The sequences in Paper D are given by the forward iterations of a point $x\in[0,1]$ under a piecewise expanding map $T_a:[0,1]\to[0,1]$ depending on a parameter $a$ contained in an interval $I$. Under the assumption that each $T_a$ admits a unique absolutely continuous invariant probability measure $\mu_a$ and that some technical conditions are satisfied, we show that the distribution of the forward orbit $T_a^j(x)$, $j\ge1$, is described by the distribution $\mu_a$ for Lebesgue almost every parameter $a\in I$. In Paper E we apply the ideas in Paper D to certain sequences which are equidistributed in the unit interval and give a geometrical proof of an old result by Koksma.

Page generated in 0.0629 seconds