Spelling suggestions: "subject:"transformações expansores"" "subject:"transformações expansor""
1 |
Transversal families of piecewise expanding maps / Famílias transversais de transformações expansoras por pedaçosLima, Amanda de 07 May 2015 (has links)
Let t:[a,b] → ft be a C2 family of \"good\" C4 e piecewise expanding unimodal maps, with a critical point c, that is transversal to the topological classes of such maps. Given a lipchitzian observable ∅, consider the function ℛ∅(t)=∫∅dµt, where µt is the unique bsolutely continuous invariant probability of ft. We show a central limit theorem for the modulus of continuity of ℝ∅, that is limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converges to 1/(2π)½ ∫y-∞e-s2/2ds. Now, let us consider a C2+ε expanding map f : 𝕊1 → 𝕊1 and a C1+ε periodic function v : 𝕊1 → ℝ. We show that the unique bounded solution of the twisted cohomological equation v(x) = α(f(x)) - Df(x)α(x) is either of class C1+ε or nowhere differentiable. We also prove that if α is nowhere differentiable, them the modulus of continuity of α satisfies a central limit theorem, that is, there is α > 0 such that limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, where µ is the absolutely continuous invariant probability of f. / Seja t:[a,b] → ft uma família C2 \"boa\" de transformações unimodais expansoras por pedaços com um ponto crítico c, que é transversal às classes topológicas de tais transformações. Dado um observável lipschitziano ∅, considere a função ℛ∅(t)=∫∅dµt, onde µt é a única probabiidade invariante absolutamente contínua de ft. Mostramos um teorema do limite central para o módulo de continuidade de ℝ∅, isto é limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converge para 1/(2π)½ ∫y-∞e-s2/2ds. Vamos considerar agora f : 𝕊1 → 𝕊1 uma transformação expansora de classe C2+ε e v : 𝕊1 → ℝ uma função periódica de classe C1+ε. Mostramos que a única solução limitada da equação cohomológica torcida v(x) = α(f(x)) - Df(x)α(x) ou é de classe C1+ε ou não possui derivada em ponto algum. Mostramos também que se α não possui derivada em ponto algum, então o módulo de continuidade de α satisfaz um teorema do limite central, isto é, existe α > 0 tal que limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, onde µ é a probabilidade invariante absolutamente contínua associada a f.
|
2 |
Transversal families of piecewise expanding maps / Famílias transversais de transformações expansoras por pedaçosAmanda de Lima 07 May 2015 (has links)
Let t:[a,b] → ft be a C2 family of \"good\" C4 e piecewise expanding unimodal maps, with a critical point c, that is transversal to the topological classes of such maps. Given a lipchitzian observable ∅, consider the function ℛ∅(t)=∫∅dµt, where µt is the unique bsolutely continuous invariant probability of ft. We show a central limit theorem for the modulus of continuity of ℝ∅, that is limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converges to 1/(2π)½ ∫y-∞e-s2/2ds. Now, let us consider a C2+ε expanding map f : 𝕊1 → 𝕊1 and a C1+ε periodic function v : 𝕊1 → ℝ. We show that the unique bounded solution of the twisted cohomological equation v(x) = α(f(x)) - Df(x)α(x) is either of class C1+ε or nowhere differentiable. We also prove that if α is nowhere differentiable, them the modulus of continuity of α satisfies a central limit theorem, that is, there is α > 0 such that limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, where µ is the absolutely continuous invariant probability of f. / Seja t:[a,b] → ft uma família C2 \"boa\" de transformações unimodais expansoras por pedaços com um ponto crítico c, que é transversal às classes topológicas de tais transformações. Dado um observável lipschitziano ∅, considere a função ℛ∅(t)=∫∅dµt, onde µt é a única probabiidade invariante absolutamente contínua de ft. Mostramos um teorema do limite central para o módulo de continuidade de ℝ∅, isto é limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converge para 1/(2π)½ ∫y-∞e-s2/2ds. Vamos considerar agora f : 𝕊1 → 𝕊1 uma transformação expansora de classe C2+ε e v : 𝕊1 → ℝ uma função periódica de classe C1+ε. Mostramos que a única solução limitada da equação cohomológica torcida v(x) = α(f(x)) - Df(x)α(x) ou é de classe C1+ε ou não possui derivada em ponto algum. Mostramos também que se α não possui derivada em ponto algum, então o módulo de continuidade de α satisfaz um teorema do limite central, isto é, existe α > 0 tal que limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, onde µ é a probabilidade invariante absolutamente contínua associada a f.
|
3 |
Cota superior de grandes desvios para sumidouros hiperbólicos – singularesSouza, Andrêssa Lima de 09 February 2017 (has links)
Submitted by Santos Davilene (davilenes@ufba.br) on 2017-06-01T19:53:01Z
No. of bitstreams: 1
tese_andressa (3).pdf: 1107402 bytes, checksum: 2af37806adf427975c78abffa99bafc4 (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:12:05Z (GMT) No. of bitstreams: 1
tese_andressa (3).pdf: 1107402 bytes, checksum: 2af37806adf427975c78abffa99bafc4 (MD5) / Made available in DSpace on 2017-06-07T11:12:05Z (GMT). No. of bitstreams: 1
tese_andressa (3).pdf: 1107402 bytes, checksum: 2af37806adf427975c78abffa99bafc4 (MD5) / Neste trabalho obtemos uma cota superior para a taxa exponencial de grandes
desvios para observáveis contínuos em semiuxos de suspensão sobre uma base unidimensional não-uniformemente expansora com singularidades não flat ou descontinuidades, onde a função teto que define a suspensão se comporta como o logaritmo da distância para o conjunto singular/descontínuo da aplicação base. Para obtermos tal cota, mostramos que a transformação da base apresenta recorrência exponencialmente lenta para o conjunto descontínuo. Os resultados são aplicados, em particular, para semiuxos que
modelam sumidouros hiperbólicos singulares em variedades tridimensionais não necessariamente transitivos. Como corolários obtemos taxas de escape de subconjuntos destes sumidouros sem medida total e resultado de existência de medida física para classes de transformações do intervalo expansoras por pedaços com singularidades.
|
Page generated in 0.0504 seconds