Spelling suggestions: "subject:"teorema doo limited central"" "subject:"teorema ddo limited central""
1 |
Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos / Cohomology and stochastics properties of expanding maps and lipschitzians observablesLima, Amanda de 20 March 2007 (has links)
Provamos o Teorema do Limite Central para transformações expansoras por pedaços em um intervalo e observáveis com variação limitada. Utilizamos a abordagem desenvolvida por R. Rousseau-Egele, como apresentada por A. Broise. O método da demonstração se baseia no estudo de pertubações do operador de transferência de Ruelle-Perron-Frobenius. Uma contribuição original é dada no último capítulo, onde provamos que, para transformações markovianas expansoras, todos os observáveis não constantes, contínuos e com variação limitada não são infinitamente cohomólogos à zero, generalizando um resultado de Bamón, Rivera-Letelier, Urzúa and Kiwi para observáveis lipschitzianos e transformações \'z POT. n\' . A demonstração se baseia na teoria dos operadores de Ruelle-Perron-Frobenius desenvolvida nos capítulos anteriores / We prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
|
2 |
Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos / Cohomology and stochastics properties of expanding maps and lipschitzians observablesAmanda de Lima 20 March 2007 (has links)
Provamos o Teorema do Limite Central para transformações expansoras por pedaços em um intervalo e observáveis com variação limitada. Utilizamos a abordagem desenvolvida por R. Rousseau-Egele, como apresentada por A. Broise. O método da demonstração se baseia no estudo de pertubações do operador de transferência de Ruelle-Perron-Frobenius. Uma contribuição original é dada no último capítulo, onde provamos que, para transformações markovianas expansoras, todos os observáveis não constantes, contínuos e com variação limitada não são infinitamente cohomólogos à zero, generalizando um resultado de Bamón, Rivera-Letelier, Urzúa and Kiwi para observáveis lipschitzianos e transformações \'z POT. n\' . A demonstração se baseia na teoria dos operadores de Ruelle-Perron-Frobenius desenvolvida nos capítulos anteriores / We prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
|
3 |
Estudo de séries de tempo financeiras sob a perspectiva do teorema das seções de Lévy / Finalcial time series analysis based on Lévy's section theorem perspectiveRanciaro Neto, Adhemar 25 June 2013 (has links)
This study aimed to analyze financial time series grounded on a perspective of time measure
changing, based on accumulation of volatility of returns relative to the prices observed. Such
a scale was used for two reasons: the first one is related to Ludwig Von Mises’ proposition of
time concept in an economic system and the second one is related to the acceleration of
convergence in Gaussian distribution of a sequence of random variables, according to Lévy
sections theorem. By means of implementation of this new timeline, we designed a type of
trading asset strategy which its resulting average returns and risk were compared to a strategy
using daily time unit. Results suggested reflection about statistical and measurement
procedures applied to the data. / O objetivo deste trabalho foi o de estudar séries temporais financeiras fundamentadas em uma
perspectiva de alteração de medida de tempo, baseada no acúmulo de volatilidade dos
retornos relativos aos preços observados. Esta escala foi utilizada por dois motivos: o
primeiro está relacionado à proposta de Ludwig von Mises sobre a ideia de tempo em um
sistema econômico e o segundo está associado à capacidade que tal medida tem de acelerar o
processo de convergência de distribuição de uma sequência de variáveis aleatórias para a
Gaussiana, de acordo com o teorema das seções de Lévy. Com base nesta nova escala
temporal, foi elaborado um tipo de estratégia de negociação de ativos tendo seus retornos
médios e risco sido avaliados em comparação com uma estratégia utilizando o tempo em
unidades diárias. Os resultados obtidos motivaram a reflexão sobre as estatísticas utilizadas e
os procedimentos para a mensuração de desempenho de cada estratégia.
|
4 |
O teorema das seções de Lévy aplicado à séries temporais correlacionadas não estacionárias: uma análise da convergência gaussiana em sistemas dinâmicos / The theorem of the sections of Levy applied to the correlated time series no stationary: an analysis of Gaussian convergence in dynamic systemsPassos, Frederico Salgueiro 01 December 2014 (has links)
Weakly nonstationary processes appear in many challenging problems related to the physics of complex systems. An interesting question is how to quantify the rate of convergence to Gaussian behavior of rescaled heteroscedastic comming from economics time series with stationary first moments but nonstationary multifractal long-range correlated second moments and also time series generated from fractionated brownian motion where the series correlation is dependent of a parameter. Here it is used the approach Which uses a recently proposed extension of the Lévy sections theorem. It was analyzed the statistical and multifractal properties of heteroscedastic time series and found that the Lévy sections approach provides a faster convergence to Gaussian behavior relative to the convergence of traditional partial sums of variables. To understand this transition it is used several statistical tests to provide enough data on convergence behavior. It was also observed that the rescaled signals retain multifractal properties even after reaching what appears to be the stable Gaussian regime. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Processos não-estacionários com interações fracas aparecem como problemas desafiadores em sistemas complexos em física. Uma questão interessante é como quantificar a taxa de convergência para o comportamento gaussiano em séries temporais heteroscedásticas, sem uma variância única em toda a série, provenientes de sistemas financeiros, reescaladas com os primeiros momentos estacionários mas com uma multifractalidade não estacionária e segundos momentos que possuem uma correlação do longo alcance e verificar o mesmo mecanismo também em séries temporais geradas a partir de um movimento Browniano Fracionado onde a correlação da série depende de um parâmetro ajustável. Aqui é usada uma extensão do teorema das seções de Lévy. Analisando as propriedades estatísticas e multifractais de uma série temporal heteroscedástica e encontrando que as seções de Lévy fornece uma convergência mais rápida para o comportamento gaussiano relativo à convergência das tradicionais somas de variáveis, o teorema do limite central. Para entender essa transição foram utilizados vários testes estatísticos que forneceram dados suficientes sobre o comportamento de convergência. Também observou-se que os sinais reescalados mantêm suas propriedades multifractais mesmo depois de atingirem um regime que parece ser um regime gaussiano.
|
Page generated in 0.0772 seconds