Spelling suggestions: "subject:"expansion cellulaire"" "subject:"dexpansion cellulaire""
1 |
Endoréduplication, division et expansion cellulaire : mécanismes acteurs de la croissance du fruit / Endoreduplication, cell division and expansion : fruit growth mechanismDeluche, Cynthia 30 October 2015 (has links)
La transformation de la paroi de l’ovaire en un péricarpe charnu implique une coordination entre les divisions cellulaires et l’expansion cellulaire. Des données considérables sur le développement et la maturation du fruit de tomate ont été établies, mais la coordination des divisions cellulaires, de l’expansion cellulaire et de l’endoréduplication durant la mise à fruit ainsi que durant la croissance du fruit de tomate reste grossièrement caractérisée au sein du péricarpe et de nombreuses questions ne sont pas résolues : comment ces deux processus sont-ils régulés et coordonnés durant le développement du fruit d’un point de vue cellulaire? Quand commence l’endoréduplication dans les tissus du fruit et quelle est sa fonction? La première partie de ce mémoire concerne la coordination des divisions cellulaires et de l’expansion cellulaire durant la fin du développement de l’ovaire et le début du développement du fruit. Une différenciation précoce des assises cellulaires composant la paroi de l’ovaire puis le péricarpe a été démontrée. Les divisions cellulaires se font principalement au sein de l’épiderme externe et montrent une synchronisation partielle tandis que l’expansion cellulaire se fait principalement dans le mésocarpe. L’endoréduplication semble être initiée avant l’anthèse. La deuxième partie est consacrée à l’analyse du RNA-seq nucléaire en fonction de quatre niveaux de ploïdie (4, 8, 16 et 32C). La majorité des gènes montrent une augmentation proportionnelle de leurs expressions en fonction des niveaux de ploïdie. Cependant, certains gènes révèlent une surexpression ou une sous-expression en fonction des niveaux de ploïdies. / The transformation of the ovary wall into a fleshy pericarp involves a coordinated pattern of cell division and cell expansion. Considerable data have been reported on tomato fruit development and ripening, but the pattern of cell division, cell expansion and endoreduplication at the tomato fruit set and during fruit growth remains grossly appreciated at the whole pericarp level and many questions are not yet resolved: How are cell division and cell expansion coordinated in tomato fruit a cellular level and according to developmental time? When does endoreduplication begin in fruit tissues and what is its function? The first part of this deals with the coordination of cell division and cell expansion during the end of tomato ovary development and the beginning of fruit growth. Evidence for early differentiation of cell layers in the ovary wall and then in fruit pericarp are presented. Cell division happens mainly in the external epidermis and shows partial synchronization, whereas cell expansion happens mostly in mesocarp cell layers. Endoreduplication is initiated as soon as before anthesis. The second part of this work is devoted to RNA-seq based transcriptome profiling of pericarp nuclei which have been sorted according to four ploidy levels (4, 8, 16 and 32C). We demonstrate that the expression of most of the pericarp-expressed genes shows a proportional increase according to ploidy level, on a nuclear basis. However, a significant amount of genes has been identified as over-expressed or under-expressed according to ploidy level.
|
2 |
Mise en évidence d’éléments de signalisation en aval du récepteur d’auxine ABP1 / Discovering of new signalling components downstream the auxin receptor ABP1Paque, Sébastien 07 June 2013 (has links)
L’auxine est une hormone fondamentale dans le développement et la physiologie de la plante. L’obtention des plantes conditionnelles pour ABP1 a permis la mise en évidence de son importance dans la signalisation de l’auxine. Ainsi ABP1 agirait d’une part sur l’endocytose de vésicules à clathrine au niveau de la membrane plasmique et d’autre part sur la stabilité des Aux/IAAs. Ce dernier résultat suggère qu’une voie de signalisation en aval d’ABP1 permet de modifier l’homéostasie de la voie de régulation transcriptionnelle de l’auxine, la voie SCFTIR/AFBs.Mon travail de thèse a consisté à caractériser les plantes inactivées pour ABP1 lors de la croissance à l’obscurité dans la plante modèle Arabidopsis thaliana. Mon étude montre qu’ABP1 contrôle l’expansion cellulaire en jouant sur la plasticité pariétale. J’ai ainsi pu mettre en évidence une modification de la proportion de formes fucosylées des chaînes latérales des xyloglucanes, le principal hémicellulose de la paroi primaire chez Arabidopsis. Cette modification de la fucosylation des xyloglucanes requiert des changements d’expressions géniques médiés ce qui conforte l’existence d’une voie de signalisation reliant ABP1 à la voie SCFTIR/AFBs.En parallèle, j’ai mené une approche génétique de recherche de suppresseurs du phénotype lié à l’inactivation d’ABP1 à l’obscurité. Parmi les dix lignées validées, j’ai d’ores et déjà identifié le gène DCL3 comme étant impliqué dans la suppression du phénotype ss12k et mis en évidence l’implication de la voie d’extinction de gènes par l’intermédiaire de petits ARNs non codant (voie RdDM) dans le contrôle de l’expansion cellulaire. / Auxin is a key hormone concerning the control of plant physiology and the impact on plant development. Conditional plants for ABP1 allowed the post embryonic studies and have contributed to demonstrate the involvement of ABP1 in a broad range of cellular and developmental responses including the clathrin-dependent endocytosis and the regulation of Aux/IAAs homeostasis. These datas revealed that an ABP1-dependent pathway is acting on transcriptional regulation by modulating the SCFTIR/AFBs signaling pathway. I took advantage of the phenotype of dark grown seedlings to study cell expansion in ABP1 loss of function background. ABP1 knockdown induced modifications of fucosylated form of xyloglucan side chains that are the main hemicellulose in Arabidopsis primary cell wall. All data converge to show that this effect results from alterations of expression of cell wall related genes via the modulation of the SCFTIR/AFBs pathway. In parallel, I used a suppressor approach to discover new signaling components downstream of ABP1. Characterisation of one of the suppressor leads to the identification of a loss of function allele of DCL3. This data demonstrates the involvement of the RNA directed DNA methylation pathway downstream of ABP1.
|
3 |
Cellular basis of flower and leaf primordium initiation in Arabidopsis thaliana : how to make an organ in three dimensionsEchevin, Eglantine Emilie Denise 10 1900 (has links)
Le développement d’un organisme multicellulaire requière la coordination de la croissance, détermination tissulaire et différenciation cellulaire. Cependant, alors que les bases de la génétique de la morphogenèse ont été rigoureusement étudiées, le processus permettant la conversion de l’activité génétique en des structures biologiques complexes est bien moins compris. Chez Arabidopsis thaliana, les feuilles et fleurs initiés à partir du Méristème Apical Primaire (MAP) ont une expression génétique casi similaire. Toutefois, leur forme est considérablement différente dès les premières étapes de leur développement. Une compréhension de ce paradoxe requière avant tout de précisément quantifier la croissance dans toutes les dimensions de ces organes. Dans cet article, je présente une méthode de quantification spatio-temporelle complète de la croissance et de la prolifération des feuilles et des fleurs chez A. thaliana. En analysant des séries d’images confocales, j’en ai conclu que la différence morphologique observée entre feuilles et fleurs émerge principalement d’une asymétrie de la distribution de la croissance entre leurs côtés abaxial et adaxial, tôt dans leur développement. Je montre que le tissue contribuant principalement au développement des primordia est la couche 2 (L2) chez les feuilles et la couche 3 (L3) chez les fleurs. Mes résultats préliminaires démontrent que les premiers signes de l’initiation d’organes est un changement de distribution de la croissance, et non de la prolifération. Dans le futur, en appliquant, par exemple, cette méthodologie à l’étude de gènes de développement, il sera possible de finalement réconcilier la morphogenèse et la génétique de l’initiation des plantes. / The development of a multicellular organism requires the proper coordination of growth, pattern determination and cell differentiation. Still, while the genetic basis of morphogenesis has been extensively studied, the process converting gene activity into intricate biological shapes is less understood. In Arabidopsis thaliana, flowers and leaves, both initiated from the shoot apical meristem (SAM), have a very similar genetic expression profile. Yet, their shape differs considerably from early developmental stages. A full comprehension of this paradox requires an accurate quantification of cellular growth in those organs. In this paper, I am presenting a methodology for the complete spatio-temporal quantitative analysis of growth and proliferation of initiating leaves and flowers in wild type Arabidopsis thaliana. By analyzing time series of leaf and flower confocal images, I conclude that the morphological differences observed between flowers and leaves mainly arises from asymmetrical distributions of growth between their adaxial and abaxial sides during their initiation. I show that the tissue that mainly contributes to the development of early primordium is the layer 2 (L2) in leaves, and the layer 3 (L3) in flowers. My preliminary results also demonstrate that the first signs of organ initiation are a change in growth distribution, not cell proliferation. In the future, by applying this methodology, for example, to study morphogen reporter lines, it could finally bridge the gap between the morphogenesis and the genetics of plant initiation.
|
4 |
Cell wall mediated regulation of plant cell morphogenesis : pectin esterification and cellulose crystallinityAltartouri, Bara 05 1900 (has links)
No description available.
|
5 |
Characterization of ex vivo expanded human hematopoietic stem and progenitor cellsAnsari, Unain 04 1900 (has links)
Les cellules souches hématopoïétiques (CSH) sont des cellules souches adultes, responsables du maintien du système sanguin tout au long de la vie des vertébrés. Les CSH sont des cellules multipotentes spécialisées qui possèdent deux propriétés principales : leur capacité à se différencier en de multiples lignées et leur capacité à créer d'autres cellules souches (c'est-à-dire l'autorenouvellement). Grâce à ces caractéristiques, les CSH ont un énorme potentiel thérapeutique. En effet, la transplantation de CSH constitue à ce jour une option de choix pour le traitement de plusieurs maladies et troubles hématologiques. Les CSH ne se retrouvent que dans certains échantillons biologiques comme la moelle osseuse, les cellules mobilisées de la moelle osseuse dans le sang périphérique ou les cellules de sang de cordon ombilical. Les applications cliniques des CSH sont souvent limitées en raison de leur faible fréquence dans les échantillons biologiques, c’est pourquoi leur expansion ex vivo est un domaine de recherche en plein essor. Des approches basées sur des petites molécules pour amplifier le nombre les cellules couches ex vivo ont été testées avec succès pour permettre la prolifération des cellules et freiner leur différentiation. Notre groupe a contribué à ce domaine en identifiant la petite molécule UM171 qui peut amplifier les CSH ex vivo par reprogrammation épigénétique. Dans le cadre des efforts d’expansion ex vivo des CSH, un obstacle majeur est la caractérisation des cellules qui ont proliféré ex vivo afin d’évaluer de façon exhaustive le potentiel des greffons pour des applications ultérieures. La caractérisation phénotypique des CSH amplifiées ex vivo est une approche prometteuse pour aider à isoler et à purifier les cellules souches. Les travaux de cette thèse explorent l'association de l'immunophénotype à la fonctionnalité des cellules souches pour nous aider à définir l'hétérogénéité des cellules amplifiées. Au chapitre 2, en utilisant un profilage de cellules amplifiées basée sur le transcriptome, nous avons pu identifier CEACAM1 comme un nouveau marqueur fonctionnel des CSH. Concomitamment, au chapitre 3, nous appliquons une approche alternative basée sur le protéome de la surface cellulaire pour aider à caractériser le phénotype des cellules souches et progénitrices hématopoïétiques (CSPH) amplifiées ex vivo afin d'identifier GPA33 en comme marqueur probable de CSH. Les marqueurs de surface compatibles avec la culture constituent un excellent outil pour un isolement prospectif rapide et des manipulations in vitro et in vivo supplémentaires pour permettre une meilleure compréhension de la biologie des cellules souches. La caractérisation des HSPC expansées ex vivo est donc une tentative de combler le fossé et de permettre des stratégies thérapeutiques améliorées. / Hematopoietic stem cells (HSCs) are responsible for maintaining the blood system throughout the lifespan of vertebrates. HSCs are specialized multipotent cells that have two main properties – their ability to differentiate into multiple lineages and their ability to create more stem cells (i.e. self-renewal). Due to these special abilities, HSCs have tremendous therapeutic potential. HSCs thus to date are the best curative measure against most hematological malignancies and disorders. HSCs occur in limited frequency and can be found only from certain conserved sources like the bone marrow or mobilized cells from the bone marrow in the peripheral blood or umbilical cord blood cells. Clinical applications of HSCs are often restricted due to their low occurring frequencies, therefore ex vivo expansion is a growing research field. Small molecule-based approaches to expand stem cells ex vivo have been successfully tested to allow for proliferation of cells by curbing their differentiation. Our group has contributed to this field by the identification of the small molecule UM171 which can expand hematopoietic stem and progenitor cells (HSPCs) ex vivo via epigenetic reprogramming. To expand HSPCs ex vivo a major hurdle is the proper characterization of the ex vivo expanded cells to evaluate the full potential of grafts for further downstream applications. Phenotypic dissociation of ex vivo expanded HSPCs is a prospective tool to help isolate and purify stem cells. Identification of culture-compatible surface markers is therefore the first step to help characterize the ex vivo expanded cells. The work in this thesis explores the association of immunophenotype to the functionality of stem cells to help us delineate the heterogeneity of expanded cells. In Chapter 2, using transcriptome-based interrogation of expanded cells, we were able to identify CEACAM1 as a novel functional marker of HSCs. Whereas, in Chapter 3 we apply an alternative cell surface proteome-based approach to help characterize the phenotype of ex vivo expanded HSPCs to identify GPA33 as a probable HSC marker. Culture-compatible surface markers make for an excellent tool for rapid prospective isolation and additional in vitro and in vivo manipulations to allow a better understanding of stem cell biology. Characterization of ex vivo expanded HSPCs is thus an attempt to help bridge the gap and allow for enhanced therapeutic strategies.
|
Page generated in 0.0893 seconds