• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Full Scale Experimental Transonic Fan Interaction with a Boundary Layer Ingesting Total Pressure Distortion

Bailey, Justin Mark 05 January 2017 (has links)
Future commercial transport aircraft will feature more aerodynamic architectures to accommodate stringent design goals for higher fuel efficiency, reduced cruise and taxi NOx emissions, and reduced noise. Airframe designs most likely to satisfy the first goal feature architectures that lead to the formation of non-uniform flow introduced to the engine through boundary layer ingesting (BLI) inlets, creating a different operational environment from which the engines were originally designed. The goal of this study was to explore the effects such non-uniform flow would have on the behavior and performance of a transonic fan in a full scale engine test environment. This dissertation presents an experimental study of the interaction between a full scale transonic fan and a total pressure distortion representative of a boundary layer ingesting serpentine inlet. A five-hole pneumatic probe was traversed directly in front of and behind a fan rotor to fully characterize the inlet and outlet fan profile. The distortion profile was also measured at the aerodynamic interface plane (AIP) with an SAE standard total pressure rake, which has historically been accepted as the inlet profile to the fan. This provided a comparison between the present work and current practice. Accurate calculation of local fan performance metrics such as blade loading, pressure rise, and efficiency were obtained. The fan inlet measurement profile greatly enhanced the understanding of the fan interaction to the flow distortion and provided a more complete explanation of the fan behavior. Secondary flowfield formation due to the accelerated flow redistribution directly upstream of the fan created localized bulk co- and counter- rotating swirl regions that were found to be correlated with localized fan performance phenomena. It was observed that the effects of the distortion on fan performance were exaggerated if the assumed fan inlet profiles were data taken only at the AIP. The reduction in fan performance with respect to undistorted inlet conditions is also explored, providing insight into how such distortions can be compared to baseline conditions. The dissertation closes with several recommendations for improving distortion tolerant fan design in the context of experimental research and development. / Ph. D.
2

Control for transient response of turbocharged engines

Cieslar, Dariusz January 2013 (has links)
The concepts of engine downsizing and down-speeding offer reductions in CO2 emissions from passenger cars. These reductions are achieved by reducing pumping and friction losses at part-load operation. Conventionally, rated torque and power for downsized units are recovered by means of turbocharging. The transient response of such engines is, however, affected by the static and dynamic characteristics of the turbo-machinery. Recent advances in engine simulation and control tools have been employed for the purpose of the research reported in this thesis to identify and verify possible air-path enhancements. A systematic method for evaluating various turbocharger assistance concepts is proposed and discussed in this thesis. To ensure a fair comparison of selected candidate systems, an easily reconfigurable controller providing a close-to-optimal operation, while satisfying physical limits, is formulated. This controller is based on the Model Predictive Control framework and uses a linearised mean value model to optimise the predicted behaviour of the engine. Initially, the controller was applied to a 1D simulation model of a conventional light-duty Diesel engine, for which the desired closed-loop features were verified. This procedure was subsequently applied to various air-path enhancement systems. In this thesis, a turbocharger electric assistance and various concepts based on compressed gas injection were considered. The capability of these systems to improve engine response during third gear tip-in manoeuvre was quantified. This investigation was also complemented with a parametric study of how effectively each of the considered methods used its available resources. As a result, injecting compressed gas into the exhaust manifold was identified as an effective method, which to date has attracted limited attention from engine research community. The effectiveness of the exhaust manifold assistance was experimentally verified on a light-duty Diesel engine. The sensitivity of the improvements to compressed gas supply parameters was also investigated. This led to the development of the BREES system: a low component count, compressed gas based system for reducing turbo-lag. It was shown that during braking manoeuvres a tank can be charged to the level sufficient for a subsequent boost assistance event. Such a functionality was implemented with a very limited set of additional components and only minor changes to the standard engine control.
3

Analysis of spray-wall impingement, fuel film spreading and vaporisation for reciprocating engine applications / Analyse du mouillage, du développement et de l’évaporation d’un film liquide pour des applications moteurs automobiles

Lamiel, Quentin 23 October 2019 (has links)
Le transport routier est responsable d’une partie des émissions de polluants sur la planète. Conscient de ce problème, des lois sur les émissions des véhicules sont régulièrement votées afin de réduire l’impact environnemental du transport automobile. Ces lois de plus en plus restrictives ont poussé les fabricants automobiles à réduire la taille des moteurs essence et à utiliser des procédés d’injection directe afin d’augmenter le ratio puissance/volume des moteurs et réduire la consommation. Cependant avec l’utilisation de l’injection directe, de nouveaux problèmes apparaissent, notamment la production de particules fines, elles-mêmes réglementées. Cette thèse s’inscrit dans ce cadre. En effet, les films liquides engendrés par l’injection de carburant sont identifiés comme principaux responsables de la production de particules. Dans ce contexte, les films liquides sont étudiés expérimentalement à l’aide d’un injecteur haute pression disposant de 3 trous. Les aspects dynamiques de création et d’étalement du film liquides sont étudiés et modélisés. S’en suit une étude thermique de l’interaction entre le spray et la paroi. Afin de caractériser les pertes de chaleur observées lors de l’impact, ces pertes thermiques étant responsables d’un délai dans la vaporisation du carburant et donc d’inhomogénéités du mélange au moment de la combustion, une modélisation de ces pertes et du transfert thermique associé est aussi proposée. Enfin une étude des taux d’évaporation de plusieurs alcanes purs puis de mélanges est proposée. Ces mesures ont servi à la calibration d’un modèle numérique d’évaporation de films fins de carburants sur des parois chaudes. Autour de ces différentes études, une campagne d’essais moteurs a été effectuée. L’objectif est de confirmer que les études expérimentales faites en laboratoires sont bien transposables (moyennant la prise de certaines précautions) aux moteurs automobiles. Les conclusions des différentes études sont finalementproposées / The road transport is responsible of a considerable amount of pollutants emissions at the worldwide scale. To tackle this issue, many laws are trying to give a framework to reduce the emissions at the global scale. The law are always more restrictive, and they oriented the car manufacturers to the reduction of their gasoline engine size. This phenomenon, called downsizing, lead to the use of direct injection in order to improve the power/volume ratio of the engine. However, with direct injection the problem of particle emissions arose. Indeed, the liquid film generated during the injection process are responsible of inhomogeneities in the combustion chamber which lead to particles formation. In this context, the study of the fuel films in the combustion chamber is a major concern. To perform this study several experimental apparatus are designed in this thesis. A high-pressure 3-hole solenoid injector is used in order to generate liquid films. The generation and the spreading of the liquid films is observed and modelled. Then the thermal aspects of the spray impingement is studied, to characterise the local heat transfer. These thermal loss are delaying the evaporation of the liquid film, which will lead to inhomogeneities in the combustion chamber and particle generation. A modelling of the heat transfer is also proposed, finally the evaporation rate of alkanes films is proposed. Mono and multicomponents films are studied, these measures were used to calibrate a numerical model for the evaporation of thin liquid films on hot walls. Together with the previous experimental investigationsand models a test campaign on a real engine has been held. The objective is to confirm that, the results produced out of the engine are transposable to the engine (with careful attention). Conclusions on the different aspects are then presented

Page generated in 0.0773 seconds