Spelling suggestions: "subject:"expoente crítico dde sobolev,"" "subject:"expoente crítico dde korolev,""
1 |
Um problema elíptico com expoente crítico de SobolevRicardo, Cleiton de Lima 31 July 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:23Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 590579 bytes, checksum: 4c4cd48135a64532856a71b6336c52f4 (MD5)
Previous issue date: 2014-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we studied existence of positive solutions for an elliptic problem with critical Sobolev exponent
(-u = up + f(x; u) em u = 0 sobre @ that vanishes on the boundary of a bounded domain of Rn. The nonlinearity f(x; u) has subcritical growth. This is done by showing that the minimax level is below a constant that depends only on the dimension of the domain and the best Sobolev constant. / Nesta dissertação procuramos abordar a existência de soluções positivas para um problema elíptico com expoente crítico de Sobolev
(-u = up + f(x; u) em u = 0 sobre @ onde é um domínio limitado do Rn. A não-linearidade de f(x; u) possui crescimento subcrítico. Para isso mostraremos que o nível minimax fica abaixo de uma constante que depende apenas da dimensão do domínio e da melhor constante de Sobolev.
|
2 |
Existence results for some elliptic equations involving the fractional Laplacian operator and critical growthAraújo, Yane Lísley Ramos 18 December 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-14T16:13:37Z
No. of bitstreams: 1
arquivototal.pdf: 1041120 bytes, checksum: 3357ded46458082b719eebe4f03879a9 (MD5) / Made available in DSpace on 2017-08-14T16:13:37Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1041120 bytes, checksum: 3357ded46458082b719eebe4f03879a9 (MD5)
Previous issue date: 2015-12-18 / In this work we prove some results of existence and multiplicity of solutions for equations
of the type
( ) u + V (x)u = f(x; u) in RN;
where 0 < < 1, N 2 , ( ) denotes the fractional Laplacian, V : RN ! R is a
continuous function that satisfy suitable conditions and f : RN R ! R is a continuous
function that may have critical growth in the sense of the Trudinger-Moser inequality
or in the sense of the critical Sobolev exponent. In order to obtain our results we
use variational methods combined with a version of the Concentration-Compactness
Principle due to Lions. / Neste trabalho provamos alguns resultados de existência e multiplicidade de soluções
para equações do tipo
( ) u + V (x)u = f(x; u) em RN;
onde 0 < < 1, N 2 , ( ) denota o Laplaciano fracionário, V : RN ! R é uma
função contínua que satisfaz adequadas condições e f : RN R ! R é uma função cont
ínua que pode ter crescimento crítico no sentido da desigualdade de Trudinger-Moser
ou no sentido do expoente crítico de Sobolev. A m de obter nossos resultados usamos
métodos variacionais combinados com uma versão do Princípio de Concentração-
Compacidade devido à Lions.
|
3 |
Concentration-compactness principle and applications to nonlocal elliptic problemsSouza, Diego Ferraz de 13 December 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:14:54Z
No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5)
Previous issue date: 2016-12-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to analyze concentration-compactness principles for
fractional Sobolev spaces based on the concentration compactness principle of P.-L.
Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to
K. Tintarev and K.-H Fieseler. As application, we address questions on compactness
of the associated energy functional to the following nonlocal elliptic problems,
$'
''''''&'
''''''%
p qsu fpx; uq in RN;
p qsu apxqu fpx; uq in RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3;
p q Kpxqu2 in R3;
where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to
a suitable Lebesgue space. We obtain existence results for a wide class of possible
singular potentials apxq; not necessarily bounded away from zero and for oscillatory
nonlinearities in both subcritical and critical growth range that may not satisfy the
Ambrosetti-Rabinowitz condition. / O objetivo principal deste trabalho é analisar princípios de concentração de
compacidade para espaços de Sobolev fracionários baseados na concentração de
compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em
espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos
questões sobre a compacidade do funcional energia associado aos seguintes problems
elípticos não locais,
$'
''''''&'
''''''%
p qsu fpx; uq em RN;
p qsu apxqu fpx; uq em RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3;
p q Kpxqu2 em R3;
onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço
de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de
potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por
uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos
subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
|
4 |
Multiplicidade de Soluções para Problemas Elípticos Semilineares Envolvendo o Expoente Crítico de SobolevPrazeres, Disson Soares dos 04 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 549935 bytes, checksum: f7562c326b5af177cb80a71a184aa0c9 (MD5)
Previous issue date: 2010-08-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this dissertation, we study the multiplicity of solutions for the following class of semilinear elliptic problems involving the critical Sobolev exponent, ---u = - juj2---2 u + f (x; u) ; x 2 e u = 0; x 2 @ ; where N - 3, - RN is a smooth and bounded domain, - is a positive real parameter
and 2- = 2N= (N - 2) is the critical Sobolev exponent. In obtaining our result, we use variational methods, such as, minimax theorems, Lusternik-Schnirelman theorems, as well
as, concentration-compactness lemma. / Nesta dissertação, estudamos a multiplicidade de soluções para a seguinte classe de
problemas elípticos semilineares envolvendo o expoente crítico de Sobolev, --u = - juj2---2 u + f (x; u) ; x 2
e u (x) = 0; x 2 @ ; onde N - 3, - RN é um dominio suave e limitado, - é um parâmetro real positivo e 2* = 2N= (N - 2) é o expoente crítico de Sobolev. Na prova dos resultados, usamos métodos variacionais, tais como, teoremas do tipo minimax, teoremas do tipo Lusternik-Schnirelman, bem como, lemas de concentração-compacidade.
|
5 |
Resultados de existência para as equações críticas de Klein-Gordon-MaxwellCunha, Patrícia Leal da 10 February 2011 (has links)
Made available in DSpace on 2016-06-02T20:27:38Z (GMT). No. of bitstreams: 1
3466.pdf: 565162 bytes, checksum: 770041f07c68eda588bd0c501dabe93d (MD5)
Previous issue date: 2011-02-10 / Financiadora de Estudos e Projetos / In this work we analyze the existence of radially symmetric solutions, positive solutions as well as the existence of ground state solutions for a class of Klein-Gordon-Maxwell equations when the nonlinearity exhibits critical behavior. For the positive and ground state solutions we prove existence results when a potential V is introduced. In order to obtain such results, we use variational methods / Neste trabalho analisamos a existência de soluções radialmente simétricas, soluções positivas, bem como a existência de soluções ground state para uma classe de equações do tipo Klein-Gordon-Maxwell quando a não-linearidade exibe comportamento crítico. Para as soluções positivas e do tipo ground state provamos resultados de existência quando um potencial V é introduzido. A fim de obtermos tais resultados, usamos métodos variacionais.
|
6 |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexoGuimarães , Angelo 01 March 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:05Z
No. of bitstreams: 2
Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:53Z (GMT) No. of bitstreams: 2
Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-06T14:33:53Z (GMT). No. of bitstreams: 2
Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz. / Neste trabalho estudaremos existência e multiplicidade de soluções fracas do problema elíptico com termo semilinear côncavo-convexo, em um domínio limitado de um espaço euclidiano de dimensão N. Ao tomarmos f=0 e σ=1 temos um problema homogêneo com expoente crítico de Sobolev em que utilizamos o Teorema do Passo da Montanha para encontrar existência de uma solução quando p<q<p*. Utilizamos o gênero de Krasnoselskii para encontrar infinitas soluções quando 1<q<p. Quando f não é nula e σ=0 temos um problema do tipo não homogêneo que provamos possuir infinitas soluções utilizando um método desenvolvido por P. Rabinowitz.
|
7 |
Soluções para problemas elípticos envolvendo o expoente crítico de SobolevAlmeida, Samuel Oliveira de 05 April 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-05-11T15:47:00Z
No. of bitstreams: 1
samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-27T18:35:32Z (GMT) No. of bitstreams: 1
samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5) / Made available in DSpace on 2016-06-27T18:35:32Z (GMT). No. of bitstreams: 1
samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5)
Previous issue date: 2013-04-05 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estudamos a existência de soluções para problemas elípticos
envolvendo o expoente crítico de Sobolev.
Primeiramente, investigamos a existência de soluções para um problema
superlinear do tipo Ambrosetti-Prodi com ressonância em 1, onde 1 é o primeiro
autovalor de (−Δ,1
0 (Ω)).
Além disso, estudamos resultados de multiplicidade para uma classe de equações
elípticas críticas relacionadas com o problema de Brézis-Nirenberg, com condição
de contorno de Neumann sobre a bola. / In this work we study the existence of solutions for elliptic problems involving
critical Sobolev exponent.
Firstly we investigate the existence of solutions for an Ambrosetti-Prodi
type superlinear problem with resonance at 1 , where 1 is the first eigenvalue of
(−Δ,1
0 (Ω)).
Besides, we study multiplicity results for a class of critical elliptic equations
related to the Brézis-Nirenberg problem with Neumann boundary condition on a
ball.
|
Page generated in 0.0578 seconds