• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • Tagged with
  • 24
  • 24
  • 14
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Problemas parabólicos selineares singularmente não autônomos com expoentes críticos / Semilinear parabolic problems singularity non autonomous with critical exponents

Marcelo Jose Dias Nascimento 15 February 2007 (has links)
Neste trabalho estudamos problemas de evolução da forma \'d \' úpsilond\' SUP. \' úpsilon\' t\'\' + A (t,\'úpsilon\' )\' úpsilon\' = f(t,\'úpsilon\' ) \'úpsilon\'(0) = \' \' úpsilon\' IND. 0\' \', em um espaço de Banach X onde A(t, \'úpsilon\' ) : D \'está contido em\' X \'SETA \' X é um operador linear fechado e setorial para cada (t, \' úpsilon\' ). Quando o operador A(t, \' úpsilon\' ) é independente de \' úpsilon\' , isto é, A(t, \' úpsilon\') = A(t), mostramos um resultado de exitência, unicidade, continuidade relativamente a dados iniciais e continuação para o caso em que a não linearidade f tem crescimento crítico. Se A(t, \'úpsilon\' ) depende do tempo e do estado, então mostramos um resultado de existência, unicidade com f tendo crescimento sub-crítico semelhante aos resultados encontrados em [7, 33] / In this work we study initial value problems of the form \' d \'úpsilon\' SUP. dt + A (t, \'úpsilon\')\'úpsilon\' = f (t, \'úpsilon\' ) \' úpsilon\' (0) = \' úpsilon IND.0\', in a Banach space X where A(t,\' úpsilon\' ) : D \' this contained \' X \' ARROW\' X is an unbounded closed linear operator which is sectorial for each (t,\' úpsilon\' ). When the operator family A(t, \' úpsilon\' ) is independent of \' úpsilon\' , that is, A(t, \' úpsilon\' ) = A(t), we show a result on local well posedness and continuation with the nonlinearity f growing critically. If A(t,\' úpsilon\' ) depends on the time t and on the state \' úpsilon\' we show a local well posedness and continuation result that is similar to the result found in [7, 33]
22

Propriedades críticas estáticas e dinâmicas de modelos com simetria contínua e do modelo Z(5) / Static and dynamic critical properties of models with continuous symmetry and of the Z(5) model

Fernandes, Henrique Almeida 04 August 2006 (has links)
Neste trabalho, nós investigamos o comportamento crítico dinâmico de três modelos estatísticos utilizando simulações Monte Carlo em tempos curtos. Inicialmente, estudamos os modelos tridimensionais de dupla-troca e de Heisenberg. O expoente dinâmico de persistência global, bem como o expoente z são estimados através de duas técnicas. Para obter o expoente de persistência global, aplicamos diretamente a lei de potência obtida para a probabilidade de persistência global e em seguida fizemos o colapso de uma função universal para duas redes de tamanhos diferentes. Para estimar o valor de z, nós usamos uma função mista que combina resultados de simulações realizadas com diferentes condições iniciais e o cumulante de Binder de quarta ordem dependente do tempo. O expoente dinâmico que governa o comportamento tipo lei de potência da magnetização inicial, é estimado através da correlação temporal da magnetização (modelos de dupla-troca e Heisenberg) e da aplicação direta de uma lei de potência (modelo de Heisenberg). Os expoentes estáticos da magnetização e comprimento de correlação são estimados seguindo o comportamento de escala do parâmetro de ordem e sua derivada, respectivamente. Os resultados confirmam que esses dois modelos pertencem à mesma classe de universalidade. Em seguida, alguns expoentes críticos dinâmicos e estáticos são estimados no ponto de bifurcação do modelo de spin com simetria Z(5) bidimensional. Neste ponto, o modelo apresenta dois parâmetros de ordem diferentes, cada um possuindo um conjunto diferente de índices críticos. Os valores dos expoentes críticos estáticos estão em boa concordância com os resultados exatos. Até onde sabemos, está é a primeira tentativa de se obter os expoentes críticos dinâmicos para os modelos de dupla troca, Heisenberg e para o modelo Z(5). / In this work, we investigate the dynamic critical behavior of three statistical models by using short-time Monte Carlo simulations. At first, we study the three-dimensional double-exchange and Heisenberg models. The global persistence exponent, as well as the exponent z are estimated through two techniques. The dynamical exponent of global persistence is obtained by using the straight application of the power law obtained for the global persistence probability and by following the scaling collapse of a universal function for two diferent lattice sizes. To estimate the value of z, we use a mixed function which combines results obtained from samples submitted to diferent initial configurations and the time dependent fourth-order Binder cumulant. The dynamical exponent which governs the power law behavior of the initial magnetization, is estimated through the time correlation of the magnetization (double-exchange and Heisenberg models) and through the straight application of a power law(Heisenberg model). The statical exponents of the magnetization and correlation length are estimated through the scaling behavior of the order parameter and its derivative, respectively. The results confirm which those models belong to the same universality class. Following, the dynamical exponents and the statical exponents are estimated at the bifurcation point of the two-dimensional Z(5)-symmetric spin model. In this point, the model presents two diferent order parameters, each one possessing a diferent set of critical indices. The values of the static critical exponents are in good agreement with the exact results. Our study is, to the best of our knowledge, the first attempt to obtain the dynamic critical exponents of the double-exchange, Heisenberg, and Z(5) models.
23

Processos estocásticos não-markovianos em difusão anômala / Non-markhovian stochastic processes in anomalous difusion

Lima, Marcelo Felisberto de 15 December 2010 (has links)
A classic problem in physics concerns normal versus anomalous diffusion. Fractal analysis of random walks with memory aims at quantitatively describing the complex phenomenology observed in economic, ecological, biological and physical systems. Markov processes exhaustively account for random walks with short-range memory. In contrast, long-range memory typically gives rise to non-Markovian walks. The most extreme case of a non-Markovian random walk corresponds to a stochastic process with dependence on the entire history of the system. We study a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of 4 phases, for this system: (i) classical nonpersistence, (ii) classical persistence (iii) log-periodic nonpersistence and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Um clássico problema em física consiste em difusão normal versus anômala. Análise fractal de caminhadas aleatórias com memória, sugere descrever quantitativamente uma fenomenologia complexa observada em economia, ecologia, biologia, e física. Processos Markovianos estão representados em caminhadas aleatórias com memória de curto alcance. Em contraste, memória de longo alcance surge tipicamente em caminhadas não-Markovianas. O caso mais extremo de uma caminhada não-Markoviana corresponde a um processo estocástico com dependência em sua história completa. Estudamos uma proposta recente de caminhada não-Markoviana caracterizada por perda de memória do passado recente e persistência induzida amnesicamente. Apresento resultados analíticos mostrando um diagrama de fase completo, consistindo de 4 fases. (i) não-persistente clássico, (ii) persistente clássico controlado por feedback positivo, (iii) não-persistente log-periódico e (iv) persistente log-periódico controlado por feedback negativo. As primeiras duas fases apresentam invariância de escala em simetria contínua. Em compensação, movimento log-periódico apresenta invariância de escala em simetria discreta, com dimensão complexa maior do que a dimensão fractal real. É mostrado evidências de persistência log-periódica não somente estatísticas, mas devido também a auto-similaridade geométrica. Obtivemos os resultados numéricos e analíticos para seis expoentes críticos, que juntos caracterizam completamente as propriedades das transições.
24

Propriedades críticas estáticas e dinâmicas de modelos com simetria contínua e do modelo Z(5) / Static and dynamic critical properties of models with continuous symmetry and of the Z(5) model

Henrique Almeida Fernandes 04 August 2006 (has links)
Neste trabalho, nós investigamos o comportamento crítico dinâmico de três modelos estatísticos utilizando simulações Monte Carlo em tempos curtos. Inicialmente, estudamos os modelos tridimensionais de dupla-troca e de Heisenberg. O expoente dinâmico de persistência global, bem como o expoente z são estimados através de duas técnicas. Para obter o expoente de persistência global, aplicamos diretamente a lei de potência obtida para a probabilidade de persistência global e em seguida fizemos o colapso de uma função universal para duas redes de tamanhos diferentes. Para estimar o valor de z, nós usamos uma função mista que combina resultados de simulações realizadas com diferentes condições iniciais e o cumulante de Binder de quarta ordem dependente do tempo. O expoente dinâmico que governa o comportamento tipo lei de potência da magnetização inicial, é estimado através da correlação temporal da magnetização (modelos de dupla-troca e Heisenberg) e da aplicação direta de uma lei de potência (modelo de Heisenberg). Os expoentes estáticos da magnetização e comprimento de correlação são estimados seguindo o comportamento de escala do parâmetro de ordem e sua derivada, respectivamente. Os resultados confirmam que esses dois modelos pertencem à mesma classe de universalidade. Em seguida, alguns expoentes críticos dinâmicos e estáticos são estimados no ponto de bifurcação do modelo de spin com simetria Z(5) bidimensional. Neste ponto, o modelo apresenta dois parâmetros de ordem diferentes, cada um possuindo um conjunto diferente de índices críticos. Os valores dos expoentes críticos estáticos estão em boa concordância com os resultados exatos. Até onde sabemos, está é a primeira tentativa de se obter os expoentes críticos dinâmicos para os modelos de dupla troca, Heisenberg e para o modelo Z(5). / In this work, we investigate the dynamic critical behavior of three statistical models by using short-time Monte Carlo simulations. At first, we study the three-dimensional double-exchange and Heisenberg models. The global persistence exponent, as well as the exponent z are estimated through two techniques. The dynamical exponent of global persistence is obtained by using the straight application of the power law obtained for the global persistence probability and by following the scaling collapse of a universal function for two diferent lattice sizes. To estimate the value of z, we use a mixed function which combines results obtained from samples submitted to diferent initial configurations and the time dependent fourth-order Binder cumulant. The dynamical exponent which governs the power law behavior of the initial magnetization, is estimated through the time correlation of the magnetization (double-exchange and Heisenberg models) and through the straight application of a power law(Heisenberg model). The statical exponents of the magnetization and correlation length are estimated through the scaling behavior of the order parameter and its derivative, respectively. The results confirm which those models belong to the same universality class. Following, the dynamical exponents and the statical exponents are estimated at the bifurcation point of the two-dimensional Z(5)-symmetric spin model. In this point, the model presents two diferent order parameters, each one possessing a diferent set of critical indices. The values of the static critical exponents are in good agreement with the exact results. Our study is, to the best of our knowledge, the first attempt to obtain the dynamic critical exponents of the double-exchange, Heisenberg, and Z(5) models.

Page generated in 0.0575 seconds