Spelling suggestions: "subject:"exponencial paramétrica"" "subject:"exponencial semiparamétrica""
1 |
Correção de viés do estimador de máxima verossimilhança para a família exponencial biparamétricaDOURADO, Gilson Barbosa January 2004 (has links)
Made available in DSpace on 2014-06-12T18:05:26Z (GMT). No. of bitstreams: 2
arquivo7248_1.pdf: 566296 bytes, checksum: 37d95568b4c6888f124819f5ec1a9f09 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2004 / Os estimadores de máxima verossimilhança são, em geral, viesados para o verdadeiro valor do parâmetro. Normalmente, o viés é desprezado com base na alegação de que ele é desprezível comparado aos erros padrão das estimativas. Em uma amostra de tamanho n, o viés em geral é de ordem O(n¡1), enquanto que o desvio padrão ée de ordem O(n¡1=2). Apesar do viés não constituir um problema sério se o tamanho da amostra for razoavelmente grande, em amostras onde o tamanho não é suficientemente grande o viés pode ser significativo. Dada a grande importância do estimador de máxima verossimilhança, muitas técnicas foram desenvolvidas para corrigir o viés destes estimadores em pequenas amostras. O objetivo desta dissertação é apresentar algumas técnicas que concentram na remoção do viés de segunda ordem para estimadores de máxima verossimilhança na família exponencial biparamétrica, o que pode ser feito tanto de forma analítica como númerica. Apresentaremos três procedimentos para correção do viés de segunda ordem das estimativas de máxima verossimilhança. O primeiro procedimento é baseado na expressão do viés de segunda ordem obtida por Cox e Snell (1968), onde o estimador corrigido será dado pela diferença entre o estimador de máxima verossimilhança e o viés de segunda ordem calculado usando o estimador original. Uma segunda metodologia utilizada para corrigir o estimador de máxima verossimilhança foi introduzida por Firth (1993). Este método consiste na modificação da funçao escore com o objetivo de remover o termo de ordem n¡1 do viés do estimador de máxima verossimilhança. Um terceiro procedimento para a correção do viés de segunda ordem do estimador de máxima verossimilhança é baseado na estimaçãso númerica do viés através de um esquema de reamostragem bootstrap, onde o viés é estimado como a diferença entre o valor médio das estimativas de máxima verossimilhança nas réplicas de bootstrap e a estimativa original. Derivamos a expressão do viés dos estimadores de máxima verossimilhança para a formula de Cox e Snell (1968). Comprovamos a similaridade entre os métodos corretivo e preventivo, que demonstraram desempenho superior na redução do viés e do erro quadrático médio em comparação aos estimadores originais e bootstrap
|
2 |
Estimação e teste de hipótese baseados em verossimilhanças perfiladas / "Point estimation and hypothesis test based on profile likelihoods"Silva, Michel Ferreira da 20 May 2005 (has links)
Tratar a função de verossimilhança perfilada como uma verossimilhança genuína pode levar a alguns problemas, como, por exemplo, inconsistência e ineficiência dos estimadores de máxima verossimilhança. Outro problema comum refere-se à aproximação usual da distribuição da estatística da razão de verossimilhanças pela distribuição qui-quadrado, que, dependendo da quantidade de parâmetros de perturbação, pode ser muito pobre. Desta forma, torna-se importante obter ajustes para tal função. Vários pesquisadores, incluindo Barndorff-Nielsen (1983,1994), Cox e Reid (1987,1992), McCullagh e Tibshirani (1990) e Stern (1997), propuseram modificações à função de verossimilhança perfilada. Tais ajustes consistem na incorporação de um termo à verossimilhança perfilada anteriormente à estimação e têm o efeito de diminuir os vieses da função escore e da informação. Este trabalho faz uma revisão desses ajustes e das aproximações para o ajuste de Barndorff-Nielsen (1983,1994) descritas em Severini (2000a). São apresentadas suas derivações, bem como suas propriedades. Para ilustrar suas aplicações, são derivados tais ajustes no contexto da família exponencial biparamétrica. Resultados de simulações de Monte Carlo são apresentados a fim de avaliar os desempenhos dos estimadores de máxima verossimilhança e dos testes da razão de verossimilhanças baseados em tais funções. Também são apresentadas aplicações dessas funções de verossimilhança em modelos não pertencentes à família exponencial biparamétrica, mais precisamente, na família de distribuições GA0(alfa,gama,L), usada para modelar dados de imagens de radar, e no modelo de Weibull, muito usado em aplicações da área da engenharia denominada confiabilidade, considerando dados completos e censurados. Aqui também foram obtidos resultados numéricos a fim de avaliar a qualidade dos ajustes sobre a verossimilhança perfilada, analogamente às simulações realizadas para a família exponencial biparamétrica. Vale mencionar que, no caso da família de distribuições GA0(alfa,gama,L), foi avaliada a aproximação da distribuição da estatística da razão de verossimilhanças sinalizada pela distribuição normal padrão. Além disso, no caso do modelo de Weibull, vale destacar que foram derivados resultados distribucionais relativos aos estimadores de máxima verossimilhança e às estatísticas da razão de verossimilhanças para dados completos e censurados, apresentados em apêndice. / The profile likelihood function is not genuine likelihood function, and profile maximum likelihood estimators are typically inefficient and inconsistent. Additionally, the null distribution of the likelihood ratio test statistic can be poorly approximated by the asymptotic chi-squared distribution in finite samples when there are nuisance parameters. It is thus important to obtain adjustments to the likelihood function. Several authors, including Barndorff-Nielsen (1983,1994), Cox and Reid (1987,1992), McCullagh and Tibshirani (1990) and Stern (1997), have proposed modifications to the profile likelihood function. They are defined in a such a way to reduce the score and information biases. In this dissertation, we review several profile likelihood adjustments and also approximations to the adjustments proposed by Barndorff-Nielsen (1983,1994), also described in Severini (2000a). We present derivations and the main properties of the different adjustments. We also obtain adjustments for likelihood-based inference in the two-parameter exponential family. Numerical results on estimation and testing are provided. We also consider models that do not belong to the two-parameter exponential family: the GA0(alfa,gama,L) family, which is commonly used to model image radar data, and the Weibull model, which is useful for reliability studies, the latter under both noncensored and censored data. Again, extensive numerical results are provided. It is noteworthy that, in the context of the GA0(alfa,gama,L) model, we have evaluated the approximation of the null distribution of the signalized likelihood ratio statistic by the standard normal distribution. Additionally, we have obtained distributional results for the Weibull case concerning the maximum likelihood estimators and the likelihood ratio statistic both for noncensored and censored data.
|
3 |
Estimação e teste de hipótese baseados em verossimilhanças perfiladas / "Point estimation and hypothesis test based on profile likelihoods"Michel Ferreira da Silva 20 May 2005 (has links)
Tratar a função de verossimilhança perfilada como uma verossimilhança genuína pode levar a alguns problemas, como, por exemplo, inconsistência e ineficiência dos estimadores de máxima verossimilhança. Outro problema comum refere-se à aproximação usual da distribuição da estatística da razão de verossimilhanças pela distribuição qui-quadrado, que, dependendo da quantidade de parâmetros de perturbação, pode ser muito pobre. Desta forma, torna-se importante obter ajustes para tal função. Vários pesquisadores, incluindo Barndorff-Nielsen (1983,1994), Cox e Reid (1987,1992), McCullagh e Tibshirani (1990) e Stern (1997), propuseram modificações à função de verossimilhança perfilada. Tais ajustes consistem na incorporação de um termo à verossimilhança perfilada anteriormente à estimação e têm o efeito de diminuir os vieses da função escore e da informação. Este trabalho faz uma revisão desses ajustes e das aproximações para o ajuste de Barndorff-Nielsen (1983,1994) descritas em Severini (2000a). São apresentadas suas derivações, bem como suas propriedades. Para ilustrar suas aplicações, são derivados tais ajustes no contexto da família exponencial biparamétrica. Resultados de simulações de Monte Carlo são apresentados a fim de avaliar os desempenhos dos estimadores de máxima verossimilhança e dos testes da razão de verossimilhanças baseados em tais funções. Também são apresentadas aplicações dessas funções de verossimilhança em modelos não pertencentes à família exponencial biparamétrica, mais precisamente, na família de distribuições GA0(alfa,gama,L), usada para modelar dados de imagens de radar, e no modelo de Weibull, muito usado em aplicações da área da engenharia denominada confiabilidade, considerando dados completos e censurados. Aqui também foram obtidos resultados numéricos a fim de avaliar a qualidade dos ajustes sobre a verossimilhança perfilada, analogamente às simulações realizadas para a família exponencial biparamétrica. Vale mencionar que, no caso da família de distribuições GA0(alfa,gama,L), foi avaliada a aproximação da distribuição da estatística da razão de verossimilhanças sinalizada pela distribuição normal padrão. Além disso, no caso do modelo de Weibull, vale destacar que foram derivados resultados distribucionais relativos aos estimadores de máxima verossimilhança e às estatísticas da razão de verossimilhanças para dados completos e censurados, apresentados em apêndice. / The profile likelihood function is not genuine likelihood function, and profile maximum likelihood estimators are typically inefficient and inconsistent. Additionally, the null distribution of the likelihood ratio test statistic can be poorly approximated by the asymptotic chi-squared distribution in finite samples when there are nuisance parameters. It is thus important to obtain adjustments to the likelihood function. Several authors, including Barndorff-Nielsen (1983,1994), Cox and Reid (1987,1992), McCullagh and Tibshirani (1990) and Stern (1997), have proposed modifications to the profile likelihood function. They are defined in a such a way to reduce the score and information biases. In this dissertation, we review several profile likelihood adjustments and also approximations to the adjustments proposed by Barndorff-Nielsen (1983,1994), also described in Severini (2000a). We present derivations and the main properties of the different adjustments. We also obtain adjustments for likelihood-based inference in the two-parameter exponential family. Numerical results on estimation and testing are provided. We also consider models that do not belong to the two-parameter exponential family: the GA0(alfa,gama,L) family, which is commonly used to model image radar data, and the Weibull model, which is useful for reliability studies, the latter under both noncensored and censored data. Again, extensive numerical results are provided. It is noteworthy that, in the context of the GA0(alfa,gama,L) model, we have evaluated the approximation of the null distribution of the signalized likelihood ratio statistic by the standard normal distribution. Additionally, we have obtained distributional results for the Weibull case concerning the maximum likelihood estimators and the likelihood ratio statistic both for noncensored and censored data.
|
Page generated in 0.063 seconds