Spelling suggestions: "subject:"exponential 1atrix"" "subject:"exponential béatrix""
1 |
Algorithms for the matrix exponential and its Fréchet derivativeAl-Mohy, Awad January 2011 (has links)
New algorithms for the matrix exponential and its Fréchet derivative are presented. First, we derive a new scaling and squaring algorithm (denoted expm[new]) for computing eA, where A is any square matrix, that mitigates the overscaling problem. The algorithm is built on the algorithm of Higham [SIAM J.Matrix Anal. Appl., 26(4): 1179-1193, 2005] but improves on it by two key features. The first, specific to triangular matrices, is to compute the diagonal elements in the squaring phase as exponentials instead of powering them. The second is to base the backward error analysis that underlies the algorithm on members of the sequence {||Ak||1/k} instead of ||A||. The terms ||Ak||1/k are estimated without computing powers of A by using a matrix 1-norm estimator. Second, a new algorithm is developed for computing the action of the matrix exponential on a matrix, etAB, where A is an n x n matrix and B is n x n₀ with n₀ << n. The algorithm works for any A, its computational cost is dominated by the formation of products of A with n x n₀ matrices, and the only input parameter is a backward error tolerance. The algorithm can return a single matrix etAB or a sequence etkAB on an equally spaced grid of points tk. It uses the scaling part of the scaling and squaring method together with a truncated Taylor series approximation to the exponential. It determines the amount of scaling and the Taylor degree using the strategy of expm[new].Preprocessing steps are used to reduce the cost of the algorithm. An important application of the algorithm is to exponential integrators for ordinary differential equations. It is shown that the sums of the form $\sum_{k=0}^p\varphi_k(A)u_k$ that arise in exponential integrators, where the $\varphi_k$ are related to the exponential function, can be expressed in terms of a single exponential of a matrix of dimension $n+p$ built by augmenting $A$ with additional rows and columns. Third, a general framework for simultaneously computing a matrix function, $f(A)$, and its Fréchet derivative in the direction $E$, $L_f(A,E)$, is established for a wide range of matrix functions. In particular, we extend the algorithm of Higham and $\mathrm{expm_{new}}$ to two algorithms that intertwine the evaluation of both $e^A$ and $L(A,E)$ at a cost about three times that for computing $e^A$ alone. These two extended algorithms are then adapted to algorithms that simultaneously calculate $e^A$ together with an estimate of its condition number. Finally, we show that $L_f(A,E)$, where $f$ is a real-valued matrix function and $A$ and $E$ are real matrices, can be approximated by $\Im f(A+ihE)/h$ for some suitably small $h$. This approximation generalizes the complex step approximation known in the scalar case, and is proved to be of second order in $h$ for analytic functions $f$ and also for the matrix sign function. It is shown that it does not suffer the inherent cancellation that limits the accuracy of finite difference approximations in floating point arithmetic. However, cancellation does nevertheless vitiate the approximation when the underlying method for evaluating $f$ employs complex arithmetic. The complex step approximation is attractive when specialized methods for evaluating the Fréchet derivative are not available.
|
2 |
A graph theoretic approach to matrix functions and quantum dynamicsGiscard, Pierre-Louis January 2014 (has links)
Many problems in applied mathematics and physics are formulated most naturally in terms of matrices, and can be solved by computing functions of these matrices. For example, in quantum mechanics, the coherent dynamics of physical systems is described by the matrix exponential of their Hamiltonian. In state of the art experiments, one can now observe such unitary evolution of many-body systems, which is of fundamental interest in the study of many-body quantum phenomena. On the other hand the theoretical simulation of such non-equilibrium many-body dynamics is very challenging. In this thesis, we develop a symbolic approach to matrix functions and quantum dynamics based on a novel algebraic structure we identify for sets of walks on graphs. We begin by establishing the graph theoretic equivalent to the fundamental theorem of arithmetic: all the walks on any finite digraph uniquely factorise into products of prime elements. These are the simple paths and simple cycles, walks forbidden from visiting any vertex more than once. We give an algorithm that efficiently factorises individual walks and obtain a recursive formula to factorise sets of walks. This yields a universal continued fraction representation for the formal series of all walks on digraphs. It only involves simple paths and simple cycles and is thus called a path-sum. In the second part, we recast matrix functions into path-sums. We present explicit results for a matrix raised to a complex power, the matrix exponential, matrix inverse, and matrix logarithm. We introduce generalised matrix powers which extend desirable properties of the Drazin inverse to all powers of a matrix. In the third part, we derive an intermediary form of path-sum, called walk-sum, relying solely on physical considerations. Walk-sum describes the dynamics of a quantum system as resulting from the coherent superposition of its histories, a discrete analogue to the Feynman path-integrals. Using walk-sum we simulate the dynamics of quantum random walks and of Rydberg-excited Mott insulators. Using path-sum, we demonstrate many-body Anderson localisation in an interacting disordered spin system. We give two observable signatures of this phenomenon: localisation of the system magnetisation and of the linear magnetic response function. Lastly we return to the study of sets of walks. We show that one can construct as many representations of series of walks as there are ways to define a walk product such that the factorisation of a walk always exist and is unique. Illustrating this result we briefly present three further methods to evaluate functions of matrices. Regardless of the method used, we show that graphs are uniquely characterised, up to an isomorphism, by the prime walks they sustain.
|
3 |
Calculo exacto de la matriz exponencial / Calculo exacto de la matriz exponencialAgapito, Rubén 25 September 2017 (has links)
We present several methods that allow the exact computation of the exponential matrix etA. Methods that include computation of eigenvectors or Laplace transform are very well-known, and they are mentioned herefor completeness. We also present other methods, not well-known inthe literature, that do not need the computation of eigenvectors, and are easy to introduce in a classroom, thus providing us with general formulas that can be applied to any matrix. / Presentamos varios métodos que permiten el calculo exacto de la matriz exponencial etA. Los métodos que incluyen el calculo de autovectores y la transformada de Laplace son bien conocidos, y son mencionados aquí por completitud. Se mencionan otros métodos, no tan conocidos en la literatura, que no incluyen el calculo de autovectores, y que proveen de fórmulas genéricas aplicables a cualquier matriz.
|
Page generated in 0.0537 seconds