Spelling suggestions: "subject:"extensões dde ere"" "subject:"extensões dde rre""
1 |
Extensões de Ore : ideais maximas e outras questõesCortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, σ an automorphism of R and d a σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
|
2 |
Extensões de Ore : ideais maximas e outras questõesCortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, σ an automorphism of R and d a σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
|
3 |
Extensões de Ore : ideais maximas e outras questõesCortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, σ an automorphism of R and d a σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
|
4 |
Extensões de Ore e álgebras de Hopf fracasSantos, Ricardo Leite dos January 2017 (has links)
Extensões de Ore são anéis de polinômios, denotados por R[x o &], nos quais a variável x e os elementos de R não comutam necessariamente. Algebras de Hopf fracas são algebras que tamb em são coálgebras e satisfazem um conjunto de axiomas de compatibilidade entre essas estruturas. Neste trabalho investigamos extensões de Ore cujo anel base e uma algebra de Hopf fraca. Mais especi camente, dada uma algebra de Hopf fraca R, estudamos sob quais condições R[x o &] e uma algebra de Hopf fraca com uma estrutura que estende a estrutura de R. Sob certas hipóteses, obtemos condições necessárias e su cientes para que a extensão de Ore seja uma álgebra de Hopf fraca, obtendo assim um resultado que generaliza um teorema de Panov para o contexto de algebras de Hopf fracas. / Ore extensions are polynomial rings, denoted by R[x o &], in which the variable x and the elements of R do not commute necessarily. Weak Hopf algebras are algebras which are also coalgebras and satisfy a set of axioms of compatibility betweem these structures. In this work, we investigate Ore extensions whose base ring is a weak Hopf algebra. More speci cally, if R is a weak Hopf algebra then we study under what conditions R[xo &] is a weak Hopf algebra extending the structure of R. Under certain hypotheses, we obtain necessary and su cient conditions for an Ore extension to be a weak Hopf algebra, obtaining a result that generalizes a Panov's theorem to the setting of weak Hopf algebras.
|
5 |
Extensões de Ore e álgebras de Hopf fracasSantos, Ricardo Leite dos January 2017 (has links)
Extensões de Ore são anéis de polinômios, denotados por R[x o &], nos quais a variável x e os elementos de R não comutam necessariamente. Algebras de Hopf fracas são algebras que tamb em são coálgebras e satisfazem um conjunto de axiomas de compatibilidade entre essas estruturas. Neste trabalho investigamos extensões de Ore cujo anel base e uma algebra de Hopf fraca. Mais especi camente, dada uma algebra de Hopf fraca R, estudamos sob quais condições R[x o &] e uma algebra de Hopf fraca com uma estrutura que estende a estrutura de R. Sob certas hipóteses, obtemos condições necessárias e su cientes para que a extensão de Ore seja uma álgebra de Hopf fraca, obtendo assim um resultado que generaliza um teorema de Panov para o contexto de algebras de Hopf fracas. / Ore extensions are polynomial rings, denoted by R[x o &], in which the variable x and the elements of R do not commute necessarily. Weak Hopf algebras are algebras which are also coalgebras and satisfy a set of axioms of compatibility betweem these structures. In this work, we investigate Ore extensions whose base ring is a weak Hopf algebra. More speci cally, if R is a weak Hopf algebra then we study under what conditions R[xo &] is a weak Hopf algebra extending the structure of R. Under certain hypotheses, we obtain necessary and su cient conditions for an Ore extension to be a weak Hopf algebra, obtaining a result that generalizes a Panov's theorem to the setting of weak Hopf algebras.
|
6 |
Extensões de Ore e Álgebras de WeylEugenio, Pedro Alfredo 19 April 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:14Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 648337 bytes, checksum: 9279ff33168aa2d0061e31ea1b676587 (MD5)
Previous issue date: 2013-04-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we will study the definitions, examples and basic properties of Ore extensions.
In particular, we will present a special case of Ore extensions, the Weyl algebras
An(K) over a field K. We will see that An(K) is a simple noetherian domain. We will
study also the dimension d(M) of a finitely generated An(K)-module and we will prove
the Bernstein's inequality, n d(M) 2n. Finally we will study the holonomic An(K)-
modules, that is, the finitely generated An(K)-modules such that d(M) = n: / Neste trabalho estudaremos as definições, exemplos e propriedades básicas das extens ões de Ore. Em particular, apresentaremos um tipo especial de extensões de Ore, as álgebras deWeyl An(K) sobre um corpo K. Veremos que An(K) é um domínio noetheriano simples. Estudaremos também a dimensão d(M) de um An-módulo finitamente gerado M e provaremos a desigualdade de Bernstein, n d(M) 2n. Finalmente estudaremos
os An(K)-módulos holonômicos, isto é, os An(K)-módulos finitamente gerados tais que d(M) = n .
|
7 |
Extensões de Ore e álgebras de Hopf fracasSantos, Ricardo Leite dos January 2017 (has links)
Extensões de Ore são anéis de polinômios, denotados por R[x o &], nos quais a variável x e os elementos de R não comutam necessariamente. Algebras de Hopf fracas são algebras que tamb em são coálgebras e satisfazem um conjunto de axiomas de compatibilidade entre essas estruturas. Neste trabalho investigamos extensões de Ore cujo anel base e uma algebra de Hopf fraca. Mais especi camente, dada uma algebra de Hopf fraca R, estudamos sob quais condições R[x o &] e uma algebra de Hopf fraca com uma estrutura que estende a estrutura de R. Sob certas hipóteses, obtemos condições necessárias e su cientes para que a extensão de Ore seja uma álgebra de Hopf fraca, obtendo assim um resultado que generaliza um teorema de Panov para o contexto de algebras de Hopf fracas. / Ore extensions are polynomial rings, denoted by R[x o &], in which the variable x and the elements of R do not commute necessarily. Weak Hopf algebras are algebras which are also coalgebras and satisfy a set of axioms of compatibility betweem these structures. In this work, we investigate Ore extensions whose base ring is a weak Hopf algebra. More speci cally, if R is a weak Hopf algebra then we study under what conditions R[xo &] is a weak Hopf algebra extending the structure of R. Under certain hypotheses, we obtain necessary and su cient conditions for an Ore extension to be a weak Hopf algebra, obtaining a result that generalizes a Panov's theorem to the setting of weak Hopf algebras.
|
Page generated in 0.088 seconds