Spelling suggestions: "subject:"extraordinary 0ptical atransmission"" "subject:"extraordinary 0ptical cotransmission""
1 |
Extraordinary Optical Transmission in Aligned Carbon Nanotube Devices at Terahertz Frequencies.Almousa, Shaikhah F. 09 May 2017 (has links)
No description available.
|
2 |
A Novel THz Photoconductive Source and Waveguide Based on One-dimensional Nano-gratingJafarlou, Saman January 2013 (has links)
A terahertz photoconductive source structure with nano-grating electrodes is proposed. The resonance modes of the one-dimensional nano-grating and their affect the optical power absorption are studied. In addition, an approach for optimal design of the grating to maximize the photocurrent for different proposed DC biases, is presented. The dependence of the photocurrent on physical parameters of photomixer are analyzed.
A fast analysis method for a new terahertz waveguide for photo-mixing is proposed. The wave-guiding mixer structure is a modified parallel plate waveguide (PPWG) in which the top plate is replaced by a periodic array of sub-wavelength nano-slits. The substrate of the PPWG is made of a fast photoconductive material in which laser photomixing/absorption occurs. The characteristic equation of the modified PPWG when used as a THz waveguide is derived analytically, and its guided modes are studied in details over THz range of frequencies. The accuracy of the analytical results are verified by comparison with full-wave numerical simulations. The criteria for choosing the suitable mode for photomixing application are also discussed. Finally, based on dyadic Green’s function representation, a systematic approach is provided for calculating the amplitude of the guided modes that are excited by an arbitrary photocurrent.
|
3 |
Nanofabrication and its application in plasmonic chemical and bio-sensorsZhang, Jian January 2014 (has links)
This thesis is focused on nanofabrication and its application in plasmonic chemical and bio- sensors. The contribution thus is the development of novel nanofabrication techniques and nano- structures for the sensors based on surface plasmon (SP).
Part I (Chapter 1-3) is about novel nanofabrication techniques, especially nanoimprint lithography (NIL) and electron beam lithography (EBL). For NIL, the four major aspects of NIL were discussed, including the resist, mold, imprint process and equipment for NIL. Combined with NIL and soft lithography, hybrid nanoimprint-soft lithography was investigated. To overcome the difficulty of mold fabrication, a more robust solution of mold fabrication through a sacrificial poly(dimethyl glutarimide) (PMGI) master mold was designed in this work. Based on this method, the mold was fabricated without structure distortion, and pattern replication with sub-10 nm resolution was demonstrated. For EBL, several aspects were discussed to improve the performance of EBL, including the resist, development, and exposure condition. The charging effect to the pattern distortion was studied systemically for the electron beam exposure in large area with high current (>nA). Tilted periodic nanostructure was achieved by electron beam scanning on tilted sample with dynamic focus mode. EBL on irregular surface was realized by the exposure on evaporated polystyrene.
Part II (Chapter 4-6) is the application in surface plasmonic chemical and bio-sensors. The first type of sensors is surface enhanced Raman scattering (SERS) sensor based on localized SP. Bowtie-shape nano-antenna structures of sub-10 nm gap were fabricated with the breakthrough of EBL resolution to 3 nm by exposing resist on Si3N4 membrane. By controlling the gap size during lithography, the surface plasmon enhancement was tuned accurately. High sensitivity of Au bowties antenna with sub-10 nm gap was achieved at low concentration of the target molecule (10^-7 mM, 1,2-di(4-pyridyl)ethylene in ethanol solution) and high enhancement of 10^7 resulting from the corresponding bowtie structure.
The second type of sensors is extraordinary optical transmission (EOT) sensor based on propagating SP. The process of double liftoff was developed for the fabrication of nano-hole arrays on 100 nm-thick Au film utilizing EBL. This technique is versatile for the fabrication of many kinds of high-aspect-ratio noble metal structures. Additionally, annealing method was employed in this work to improve the smoothness of Au film. It was found that the RMS roughness of the deposited film was reduced by 72 % and the sensitivity was increased by 32 nm/RIU as a result of annealing. It was also found that the optical transmission intensity of the annealed NHA of similar hole diameter was increased more than twice which is due to the smaller absorption/scattering of the incident light and surface waves from the Au film surface. Besides the double liftoff process, several techniques were developed for EOT structures, including electroplating, imprint method, and deposition on membrane.
|
4 |
A Novel THz Photoconductive Source and Waveguide Based on One-dimensional Nano-gratingJafarlou, Saman January 2013 (has links)
A terahertz photoconductive source structure with nano-grating electrodes is proposed. The resonance modes of the one-dimensional nano-grating and their affect the optical power absorption are studied. In addition, an approach for optimal design of the grating to maximize the photocurrent for different proposed DC biases, is presented. The dependence of the photocurrent on physical parameters of photomixer are analyzed.
A fast analysis method for a new terahertz waveguide for photo-mixing is proposed. The wave-guiding mixer structure is a modified parallel plate waveguide (PPWG) in which the top plate is replaced by a periodic array of sub-wavelength nano-slits. The substrate of the PPWG is made of a fast photoconductive material in which laser photomixing/absorption occurs. The characteristic equation of the modified PPWG when used as a THz waveguide is derived analytically, and its guided modes are studied in details over THz range of frequencies. The accuracy of the analytical results are verified by comparison with full-wave numerical simulations. The criteria for choosing the suitable mode for photomixing application are also discussed. Finally, based on dyadic Green’s function representation, a systematic approach is provided for calculating the amplitude of the guided modes that are excited by an arbitrary photocurrent.
|
5 |
Modes, Excitation and Applications of Plasmonic Nano-apertures and Nano-cavitiesWang, Feng 25 September 2012 (has links)
No description available.
|
6 |
The extraordinary infrared transmission of metal microarrays for enhanced absorption spectroscopy of monolayers, nanocoatings, and catalytic surface reactionsRodriguez, Kenneth Ralph 19 September 2007 (has links)
No description available.
|
7 |
Nanophotonics with subwavelength apertures: theories and applications.Pang, Yuanjie 08 May 2012 (has links)
This dissertation presents subwavelength optics with focus on the theory and applications
of subwavelength apertures in a metal film. Two main issues regarding the
optics with subwavelength apertures are investigated. As the first issue, the extraordinary
optical transmission (EOT) through a single hole in a metallic waveguide is
presented. A total transmission through a single subwavelength aperture is theoretically
predicted for a perfect electric conductor regardless of the aperture size, without
relying on aperture arrays and surface corrugations as presented in previous works.
The waveguide EOT is then applied to boost the optical throughput of an apertured
near-field scanning optical microscope (NSOM) probe. Using a new structure for
the apertured NSOM probe which allows for waveguide EOT, the optical throughput
and the damage threshold are boosted by 100× and 40× as compared to a conventional
structure, and the experimental findings are backed-up by comprehensive
finite-difference time-domain (FDTD) simulations. Single fluorescent molecules are
scanned using the EOT apertured NSOM probe, and a spatial resolution of 62 nm is
achieved. As the second issue, subwavelength apertures are found useful for optical trapping.
A small dielectric particle can significantly change the optical transmission through
an aperture by dielectric loading, and subsequently, a large optical force is induced which favors trapping. A self-induced back-action (SIBA) optical trap is designed
using a circular nanohole in a gold film. Trapping of 50 nm polystyrene particle
is experimentally achieved, which is not possible using a conventional single beam
optical tweezers. The circular nanohole SIBA trap works beyond the perturbative
regime, as proven by FDTD simulations and a Maxwell stress tensor analysis. We
further improve the nanohole trapping using a double-nanohole, which is more sensitive
for small dielectric changes due to the intense local field enhancement between
its two sharp tips. A single 12 nm silica sphere is experimentally trapped using the
double-nanohole, as the smallest trapped dielectric particle reported. We also achieve
the trapping of a single protein – a bovine serum albumin (BSA) protein with a hydrodynamic
radius of 3.4 nm in the folded form. The trapped BSA is also unfolded
by the large optical force, as confirmed by experiments with changing optical power
and changing pH. The high signal-to-noise ratio of 33 in monitoring single protein
trapping and unfolding shows a tremendous potential for using the double-nanohole
as a sensor for protein binding events at a single molecule level. / Graduate
|
8 |
Tailoring nanoscale metallic heterostructures with novel quantum propertiesSanders, Charlotte E. 2013 May 1900 (has links)
Silver (Ag) is an ideal low-loss platform for plasmonic applications, but from a materials standpoint it presents challenges. Development of plasmonic devices based on Ag thin film has been hindered both by the dificulty of fabricating such film and by its fragility out of vacuum. Silver is non-wetting on semiconducting and insulating substrates, but on certain semiconductors and insulators can adopt a metastable atomically at epitaxial film morphology if it is deposited using the "two-step" growth method. This method consists of deposition at low temperature and annealing to room temperature. However, epitaxial Ag is metastable, and dewets out of vacuum. The mechanisms of dewetting in this system remain little understood. The fragility of Ag film presents a particular problem for the engineering of plasmonic devices, which are predicted to have important industrial applications if robust low-loss platforms can be developed. This dissertation presents two sets of experiments. In the first set, scanning probe techniques and low energy electron microscopy have been used to characterize Ag(111) growth and dewetting on two orientations of silicon (Si), Si(111) and Si(100). These studies reveal that multiple mechanisms contribute to Ag film dewetting. Film stability is observed to increase with thickness, and thickness to play a decisive role in determining dewetting processes. A method has been developed to cap Ag film with germanium (Ge) to stabilize it against dewetting. The second set of experiments consists of optical studies that focus on the plasmonic properties of epitaxial Ag film. Because of the problems posed until now by epitaxial Ag growth and stabilization, research and development in the area of plasmonics has been limited to devices based on rough, thermally evaporated Ag film, which is robust and simple to produce. However, plasmonic damping in such film is higher than in epitaxial film. The optical studies presented here establish that Ag film can now be stabilized sufficiently to allow optical probing and device applications out of vacuum. Furthermore, they demonstrate the superiority of epitaxial Ag film relative to thermally evaporated film as a low-loss platform for plasmonic devices spanning the visible and infrared regimes. / text
|
9 |
Plasmonic properties of subwavelength structures and their applications in optical devicesWang, Wei, 1983 July 24- 09 February 2011 (has links)
A metallic hole array of a rectangular converging-diverging channel (RCDC) shape exhibits extraordinary transmission for wavelengths larger than the periodicity of the holes. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of two-dimensional metallic hole arrays (2D-MHA) with RCDC. For a straight channel MHA, when the aperture size is reduced, the transmission peaks have a blue-shift. The same result is observed for a smaller gap throat for the RCDC structure. For the rectangular holes with a high length-width ratio, a similar blue-shift in the transmission peaks as well as a narrower full width at half maximum (FWHM) are observed. The asymmetry from the rectangular shape gives this structure high selectivity for light with different polarizations. Furthermore, the RCDC shape gives extra degrees of geometrical variables to 2D-MHA for tuning the location of the transmission peak and the FWHM. Tunable extraordinary transmission via changing temperature of a porous metallic layer on top of a thin layer of dielectric strontium titanate (STO) is then studied. The metallic layer has a through-hole array and each hole has a circular converging-diverging channel (CDC) shape, which induces the excitation of surface plasmon polaritons (SPPs) and then results in a controllable extraordinary optical transmission in the terahertz (THz) frequency range. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of the structure. Location and magnitude of the transmission peaks can be adjusted by the hole size, converging angle, and thicknesses of metal and STO layers. Remarkably, the suggested structure presents a strong transmission dependency on temperature, which offers a new approach to actively and externally tune the transmission. Currently, the performances of thin film solar cells are limited by poor light absorption and carrier collection. In this research, large, broadband, and polarization-insensitive light absorption enhancement is realized via integrating with unique metallic nanogratings. Through simulation, three possible mechanisms are identified to be responsible for such an enormous enhancement. A test for totaling the absorption over the solar spectrum shows an up to ~30% broadband absorption enhancement when comparing to bare thin film cells. Overall performance of a thin film solar cell is determined by the efficiency of conversing photons to electrons that include light absorption, carrier generation and carrier collection processes. Photon management via hybrid designing has been emerging as a powerful means to further boost the conversion efficiency. Here a new nanograting solar cell design, which can be universal and a new solar cell platform technology, is proposed with goals to achieve large enhancement on broadband light absorption and carrier generation, most importantly, under the much reduced usage of active and non-earth-abundant materials. A test for the short circuit current density in CuIn[subscript x]Ga([subscript 1-x])Se₂ (CIGS) thin film solar cells shows an up to ~250% enhancement when comparing to the corresponding bare thin film cells. Besides that, by placing metal strips on top of the nanograting, which act as the top electrode, this design is able to reduce the use of non-earth-abundant materials such as indium that is normally used in both active and transparent conducting materials. / text
|
10 |
Plazmonické biosenzory založené na zvýšené optické transmisi / Plasmonic biosensors based on extraordinary optical transmissionDršata, Martin January 2017 (has links)
Tato diplomová práce se zabývá rigorózními simulacemi plazmonických biosenzorů založených na jevu zvýšené optické transmise. První část je věnována popisu fyzikálních jevů a poznatků, které tvoří základ pro studium vlastností plazmonických senzorů, a popisu výpočetní metody konečných prvků v časové oblasti, která je využita v této práci. Vlastní výsledky jsou uvedeny v další části, která se zabývá výzkumem citlivosti, rozlišení a dalších charakteristik zvoleného typu plazmonického sensoru, tvořeného sítí kruhových nanoděr v tenké zlaté vrstvě na substrátě nitridu křemíku, v závislosti na řadě jeho geometrických parametrů. Tyto závislosti jsou sledovány ve třech různých případech, a to senzoru umístěného ve vakuu, ponořeného ve vodě a v případě kdy je na zlatém povrchu umístěna tenká dielektrická vrstva, která reprezentuje přítomnost biomolekul uchycených na povrchu senzoru.
|
Page generated in 0.1084 seconds