Spelling suggestions: "subject:"extreme heat"" "subject:"vxtreme heat""
21 |
Spatio-temporal characterization of fractal intra-Urban Heat IsletsAnamika Shreevastava (9515447) 16 December 2020 (has links)
<div><br></div><div>Extreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Temperatures are further exacerbated in the urban areas due to the Urban Heat Island (UHI) effect resulting in increased heat-related mortality and morbidity. However, the spatial distribution of urban temperatures is highly heterogeneous. As a result, metrics such as UHI Intensity that quantify the difference between the average urban and non-urban air temperatures, often fail to characterize this spatial and temporal heterogeneity. My objective in this thesis is to understand and characterize the spatio-temporal dynamics of UHI for cities across the world. This has several applications, such as targeted heat mitigation, energy load estimation, and neighborhood-level vulnerability estimation.</div><div><br></div><div>Towards this end, I have developed a novel multi-scale framework of identifying emerging heat clusters at various percentile-based thermal thresholds T<sub>thr</sub> and refer to them collectively as <i>intra-Urban Heat Islets</i>. Using the Land Surface Temperatures from Landsat for 78 cities representative of the global diversity, I have showed that the heat islets have a fractal spatial structure. They display properties analogous to that of a percolating system as T<sub>thr</sub> varies. At the percolation threshold, the size distribution of these islets in all cities follows a power-law, with a scaling exponent = 1.88 and an aggregated Area-Perimeter Fractal Dimension =1.33. This commonality indicates that despite the diversity in urban form and function across the world, the urban temperature patterns are different realizations with the same aggregated statistical properties. In addition, analogous to the UHI Intensity, the mean islet intensity, i.e., the difference between mean islet temperature and thermal threshold, is estimated for each islet, and their distribution follows an exponential curve. This allows for a single metric (exponential rate parameter) to serve as a comprehensive measure of thermal heterogeneity and improve upon the traditional UHI Intensity as a bulk metric.</div><div><br></div><div><br></div><div>To study the impact of urban form on the heat islet characteristics, I have introduced a novel lacunarity-based metric, which quantifies the degree of compactness of the heat islets. I have shown that while the UHIs have similar fractal structure at their respective percolation threshold, differences across cities emerge when we shift the focus to the hottest islets (T<sub>thr</sub> = 90<sup>th</sup> percentile). Analysis of heat islets' size distribution demonstrates the emergence of two classes where the dense cities maintain a power law, whereas the sprawling cities show an exponential deviation at higher thresholds. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of heat islet intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean Surface UHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. </div><div><br></div><div>Lastly, I have examined the impact of external forcings such as heatwaves (HW) on the heat islet characteristics. As a case study, the European heatwave of 2018 is simulated using the Weather Research Forecast model with a focus on Paris. My results indicate that the UHI Intensity under this HW reduces during night time by 1<sup>o</sup>C on average. A surface energy budget analysis reveals that this is due to drier and hotter rural background temperatures during the HW period.</div><div>To analyze the response of heat islets at every spatial scale, power spectral density analysis is done. The results show that large contiguous heat islets (city-scale) persist throughout the day during a HW, whereas the smaller islets (neighborhood-scale) display a diurnal variability that is the same as non-HW conditions. </div><div><br></div><div>In conclusion, I have presented a new viewpoint of the UHI as an archipelago of intra-urban heat islets. Along the way, I have introduced several properties that enable a seamless comparison of thermal heterogeneity across diverse cities as well as under diverse climatic conditions. This thesis is a step towards a comprehensive characterization of heat from the spatial scales of an urban block to a megalopolis.</div><div><br></div>
|
22 |
EXTREME HEAT EVENT RISK MAP CREATION USING A RULE-BASED CLASSIFICATION APPROACHSimmons, Kenneth Rulon 19 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / During a 2011 summer dominated by headlines about an earthquake and a hurricane along the East Coast, extreme heat that silently killed scores of Americans largely went unnoticed by the media and public. However, despite a violent spasm of tornadic activity that claimed over 500 lives during the spring of the same year, heat-related mortality annually ranks as the top cause of death incident to weather. Two major data groups used in researching vulnerability to extreme heat events (EHE) include socioeconomic indicators of risk and factors incident to urban living environments. Socioeconomic determinants such as household income levels, age, race, and others can be analyzed in a geographic information system (GIS) when formatted as vector data, while environmental factors such as land surface temperature are often measured via raster data retrieved from satellite sensors. The current research sought to combine the insights of both types of data in a comprehensive examination of heat susceptibility using knowledge-based classification. The use of knowledge classifiers is a non-parametric approach to research involving the creation of decision trees that seek to classify units of analysis by whether they meet specific rules defining the phenomenon being studied. In this extreme heat vulnerability study, data relevant to the deadly July 1995 heat wave in Chicago’s Cook County was incorporated into decision trees for 13 different experimental conditions. Populations vulnerable to heat were identified in five of the 13 conditions, with predominantly low-income African-American communities being particularly at-risk. Implications for the results of this study are given, along with direction for future research in the area of extreme heat event vulnerability.
|
23 |
Spatiotemporal analysis of extreme heat events in Indianapolis and Philadelphia for the years 2010 and 2011Beerval Ravichandra, Kavya Urs 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Over the past two decades, northern parts of the United States have experienced extreme heat conditions. Some of the notable heat wave impacts have occurred in Chicago in 1995 with over 600 reported deaths and in Philadelphia in 1993 with over 180 reported deaths. The distribution of extreme heat events in Indianapolis has varied since the year 2000. The Urban Heat Island effect has caused the temperatures to rise unusually high during the summer months. Although the number of reported deaths in Indianapolis is smaller when compared to Chicago and Philadelphia, the heat wave in the year 2010 affected primarily the vulnerable population comprised of the elderly and the lower socio-economic groups. Studying the spatial distribution of high temperatures in the vulnerable areas helps determine not only the extent of the heat affected areas, but also to devise strategies and methods to plan, mitigate, and tackle extreme heat. In addition, examining spatial patterns of vulnerability can aid in development of a heat warning system to alert the populations at risk during extreme heat events. This study focuses on the qualitative and quantitative methods used to measure extreme heat events. Land surface temperatures obtained from the Landsat TM images provide useful means by which the spatial distribution of temperatures can be studied in relation to the temporal changes and socioeconomic vulnerability. The percentile method used, helps to determine the vulnerable areas and their extents. The maximum temperatures measured using LST conversion of the original digital number values of the Landsat TM images is reliable in terms of identifying the heat-affected regions.
|
24 |
Public perception and response to extreme heat eventsPorter, Raymond E. 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the United States extreme heat events have grown in size and stature over the past 20 years. Urban Heat Islands exacerbate these extreme heat events leaving a sizable portion of people at risk for heat related fatalities. The evidence of this is seen in the Chicago heat wave of 1995 which killed 500 people over the course of a week and the European heat wave of 2003 which killed 7,000 people in the course of a month. The main guiding questions then become how government and the media can most effectively warn people about the occurrence of extreme heat events? Should extreme heat warnings be issued by T.V., newspaper or by radio? Even if warnings are issued will the population at large still change their behavior? Another possible question is whether people most vulnerable to extreme heat will change their behavior? A survey in 2010 by NASA will be the main basis for this analysis. This survey set out to see how well people in Phoenix, Philadelphia, and Dayton responded to extreme heat alerts by changing their behavior.
|
Page generated in 0.0507 seconds