• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Núcleos positivos definidos em espaços 2-homogêneos / Positive definite kernels on two-point homogeneous spaces

Barbosa, Victor Simões 26 July 2016 (has links)
Neste trabalho analisamos a positividade definida estrita de núcleos contínuos sobre um espaço compacto 2-homogêneo. R. Gangolli (1967) apresentou uma caracterização completa para os núcleos que são contínuos, isotrópicos e positivos definidos sobre um espaço compacto 2-homogêneo Md: a parte isotrópica do núcleo é uma série de Fourier uniformemente convergente, com coeficientes não negativos, em relação a certos polinômios de Jacobi atrelados a Md. Uma das contribuições de nosso trabalho é uma caracterização para a positividade definida estrita de tais núcleos, complementando a caracterização apresentada por Chen et al. (2003) no caso em que Md é uma esfera unitária de dimensão maior ou igual a 2. Outra contribuição do trabalho é uma extensão do resultado de Gangolli para núcleos sobre produtos cartesianos de espaços compactos 2-homogêneos, e a consequente caracterização para núcleos estritamente positivos definidos neste mesmo contexto. Por fim, a última contribuição do trabalho envolve a análise do grau de diferenciabilidade da parte isotrópica de um núcleo contínuo, isotrópico e positivo definido sobre Md e a aplicabilidade de tal análise em resultados envolvendo a positividade definida estrita. / In this work we analyze the strict positive definiteness of continuous kernels on compact two-point homogeneous spaces Md. R. Gangolli (1967) presented a complete characterization for continuous, isotropic and positive definite kernels on Md: the isotropic part of the kernel is a uniformly convergent Fourier series of certain Jacobi polynomials associated to Md, with nonnegative coefficients. One of the contributions of our work is a characterization for the strict positive definiteness of such kernels, completing that one presented by Chen et al. (2003) in the case Md is the unit sphere of dimension at least 2. Another contribuition of this work is an extension of Gangolli\'s result for kernels on a product of compact two-point homogeneous spaces, and the subsequent characterization of strict positive definiteness in this same context. Finally, the last contribution in this work involves the analysis of the differentiability of the isotropic part of a continuous, isotropic and positive definite kernel on Md and the applicability of such analysis in results involving the strict positive definiteness.
2

Diferentes noções de diferenciabilidade para funções definidas na esfera / Different notions of differentiability for functions defined on the sphere

Castro, Mario Henrique de 01 March 2007 (has links)
Neste trabalho estudamos diferentes noções de diferenciabilidade para funções definidas na esfera unitária S^n-1 de R^n, n>=2. Em relação à derivada usual, encontramos condições necessárias e/ou suficientes para que uma função seja diferenciável até uma ordem fixada. Para as outras duas, a derivada forte de Laplace-Beltrami e a derivada fraca, apresentamos algumas propriedades básicas e procuramos condições que garantam a equivalência destas com a diferenciabilidade usual. / In this work we study different notions of differentiability for functions defined on the unit sphere S^n-1 of R^n, n>=2. With respect to the usual derivative, we find necessary and/or sufficient conditions in order that a function be differentiable up to a fixed order. As for the other two, the strong Laplace-Beltrami derivative and the weak derivative, we present some basic properties about them and search for conditions that guarantee the equivalence of them with the previous one.
3

Diferentes noções de diferenciabilidade para funções definidas na esfera / Different notions of differentiability for functions defined on the sphere

Mario Henrique de Castro 01 March 2007 (has links)
Neste trabalho estudamos diferentes noções de diferenciabilidade para funções definidas na esfera unitária S^n-1 de R^n, n>=2. Em relação à derivada usual, encontramos condições necessárias e/ou suficientes para que uma função seja diferenciável até uma ordem fixada. Para as outras duas, a derivada forte de Laplace-Beltrami e a derivada fraca, apresentamos algumas propriedades básicas e procuramos condições que garantam a equivalência destas com a diferenciabilidade usual. / In this work we study different notions of differentiability for functions defined on the unit sphere S^n-1 of R^n, n>=2. With respect to the usual derivative, we find necessary and/or sufficient conditions in order that a function be differentiable up to a fixed order. As for the other two, the strong Laplace-Beltrami derivative and the weak derivative, we present some basic properties about them and search for conditions that guarantee the equivalence of them with the previous one.
4

Núcleos positivos definidos em espaços 2-homogêneos / Positive definite kernels on two-point homogeneous spaces

Victor Simões Barbosa 26 July 2016 (has links)
Neste trabalho analisamos a positividade definida estrita de núcleos contínuos sobre um espaço compacto 2-homogêneo. R. Gangolli (1967) apresentou uma caracterização completa para os núcleos que são contínuos, isotrópicos e positivos definidos sobre um espaço compacto 2-homogêneo Md: a parte isotrópica do núcleo é uma série de Fourier uniformemente convergente, com coeficientes não negativos, em relação a certos polinômios de Jacobi atrelados a Md. Uma das contribuições de nosso trabalho é uma caracterização para a positividade definida estrita de tais núcleos, complementando a caracterização apresentada por Chen et al. (2003) no caso em que Md é uma esfera unitária de dimensão maior ou igual a 2. Outra contribuição do trabalho é uma extensão do resultado de Gangolli para núcleos sobre produtos cartesianos de espaços compactos 2-homogêneos, e a consequente caracterização para núcleos estritamente positivos definidos neste mesmo contexto. Por fim, a última contribuição do trabalho envolve a análise do grau de diferenciabilidade da parte isotrópica de um núcleo contínuo, isotrópico e positivo definido sobre Md e a aplicabilidade de tal análise em resultados envolvendo a positividade definida estrita. / In this work we analyze the strict positive definiteness of continuous kernels on compact two-point homogeneous spaces Md. R. Gangolli (1967) presented a complete characterization for continuous, isotropic and positive definite kernels on Md: the isotropic part of the kernel is a uniformly convergent Fourier series of certain Jacobi polynomials associated to Md, with nonnegative coefficients. One of the contributions of our work is a characterization for the strict positive definiteness of such kernels, completing that one presented by Chen et al. (2003) in the case Md is the unit sphere of dimension at least 2. Another contribuition of this work is an extension of Gangolli\'s result for kernels on a product of compact two-point homogeneous spaces, and the subsequent characterization of strict positive definiteness in this same context. Finally, the last contribution in this work involves the analysis of the differentiability of the isotropic part of a continuous, isotropic and positive definite kernel on Md and the applicability of such analysis in results involving the strict positive definiteness.

Page generated in 0.0632 seconds