• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 330
  • 157
  • 51
  • 40
  • 17
  • 14
  • 14
  • 11
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 854
  • 854
  • 113
  • 105
  • 91
  • 85
  • 74
  • 73
  • 70
  • 70
  • 61
  • 59
  • 59
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Systemic and Intracellular Trafficking of Long-chain Fatty Acids in Lactating Dairy Cattle

Stamey, Jennifer Anne 17 July 2012 (has links)
Marine oils are used as ration additives to provide omega-3 fatty acids to dairy cows. Supplementing dairy cows with omega-3 fatty acid-rich feeds does not easily increase quantities in milk fat of dairy cows because polyunsaturated fatty acids are biohydrogenated in the rumen. Lipid encapsulation of omega-3 fatty acids provides protection from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Lactating cows were supplemented with rumen protected algae biomass or algal oil in a 4 × 4 Latin Square. Feeding lipid encapsulated algae supplements increased docosahexaenoic acid content in milk fat while not adversely impacting milk fat yield; however, docosahexaenoic acid was preferentially esterified into plasma phospholipid, limiting its incorporation into milk fat. In the second study, triglyceride emulsions of oils enriched in either oleic, linoleic, linolenic, or docosahexaenoic acids were intravenously infused to avoid confounding effects of triglyceride esterification patterns in the small intestine and to compare mammary uptake. Milk transfer of fatty acids delivered as intravenous triglyceride emulsions was reduced with increased chain length and unsaturation. Increased target fatty acids were evident in plasma phospholipid, suggesting re-esterification in the liver. Transfer efficiencies were 37.8, 27.6, and 10.9±5.4% for linoleic, linolenic, and docosahexaenoic acid. Both liver and mammary mechanisms may regulate transfer of long-chain polyunsaturates. Intracellular fatty acid binding proteins (FABP) are cytoplasmic proteins that are hypothesized to be essential for fatty acid transport and metabolism by accelerating longchain fatty acid uptake and targeting to intracellular organelles, such as the endoplasmic reticulum for triglyceride esterification. FABP3 mRNA is highly expressed in bovine mammary and heart tissue, but is not present in MAC-T cells, a bovine mammary epithelial cell line. When overexpressed in MAC-T cells, FABP3 does not appear to be rate-limiting for fatty acid uptake in vitro and did not alter lipid metabolism. The function of FABP3 in the mammary gland remains unclear. / Ph. D.
432

Mechanistic Modeling of Biodiesel Production via Heterogeneous Catalysis

Lerkkasemsan, Nuttapol 25 May 2010 (has links)
Biodiesel has emerged as a promising renewable and clean energy alternative to petrodiesel. While biodiesel has traditionally been prepared through homogeneous basic catalysis, heterogeneous acid catalysis has been investigated recently due to its ability to convert cheaper but high free fatty acid content oils such as waste vegetable oil while decreasing production cost. In this work, the esterification of free fatty acid over sulfated zirconia and activated acidic alumina in a batch reactor was considered. The models of the reaction over the catalysts were developed in two parts. First, a kinetic study was performed using a deterministic model to develop a suitable kinetic expression; the related parameters were subsequently estimated by numerical techniques. Second, a stochastic model was developed to further confirm the nature of the reaction at the molecular level. The esterification of palmitic acid obeyed the Eley-Rideal mechanism in which palmitic acid and methanol are adsorbed on the surface for SO?/ZrO?-550°C and AcAl?O? respectively. The coefficients of determination of the deterministic model were 0.98, 0.99 and 0.99 for SO?/ZrO?-550°C at 40, 60 and 80°C respectively and 0.99, 0.98 and 0.96 for AcAl?O? at the same temperature. The deterministic and stochastic models were in good agreement. / Master of Science
433

Glucose Metabolism in Low Birth Weight Neonatal Pigs

McCauley, Sydney Russelle 04 February 2019 (has links)
The neonatal period in mammals is characterized by high growth rates and is dominated by skeletal muscle hypertrophy. Low birth weight (LBWT) neonates experience restricted growth and development of skeletal muscle, leading to metabolic perturbations later in life. The overall hypothesis of this dissertation was that in utero disturbances in glucose metabolism and increased energy requirements predisposes LBWT neonatal pigs to metabolic disturbances after birth. We sought to increase growth of skeletal muscle and improve glucose production through increasing dietary energy and to determine the changes in glucose catabolism and metabolic flexibility in different skeletal muscle fiber types in LBWT neonates. Piglets were considered normal birth weight (NBWT) and LBWT when birth weight was within 0.5 SD and below 2 SD of the litter average, respectively. Increasing dietary energy increased lean deposition in the longissimus dorsi (LD) in both NBWT and LBWT neonates. Although glucose rate of appearance was greater in LBWT compared to their NBWT sibling, glucose concentrations were reduced in LBWT compared to NBWT pigs, regardless of diet fed. Postprandial glucose concentrations were lower in LBWT compared to NBWT pigs, regardless of diet fed, although rate of appearance did not differ between them. This would suggest that glucose is being absorbed in the peripheral tissues to be utilized. However, expression of enzymes related to glycolysis were downregulated in both the soleus and LD of LBWT compared to NBWT neonatal pigs. In addition, expression of enzymes related to the catabolism of glucose in the serine biosynthetic pathway were decreased in both the soleus and LD muscles of LBWT compared to NBWT neonatal pigs. Expression of the pentose phosphate pathway was slightly increased in LBWT compared to NBWT siblings in both muscle types. Increased expression of pyruvate dehydrogenase 4 was exhibited in both the soleus and LD of LBWT pigs compared to NBWT siblings. This would indicate a switch in fuel utilization to more fatty acid oxidation. By contrast, CO2 production from the oxidation of palmitate was reduced in LBWT compared with NBWT pigs along with reduced oxidation of glucose and pyruvate. In conclusion, lipid supplementation increased growth at the expense of fat deposition in the liver of NBWT and LBWT pigs. However, supplementing with fat did not increase glucose production due to the contribution of glycerol remaining constant. Hypoglycemia cannot be attributed to greater catabolism in skeletal muscle due to decreased expression of glycolytic genes and the addition of fatty acids did not spare glucose oxidation in skeletal muscle of LBWT pigs. / PHD / During the neonatal period animals display the fastest growth rates, especially pertaining to muscle growth. Muscle development in low birth weight (LBWT) is restricted, leading not only to impaired postnatal growth but increases the risk for developing metabolic diseases later in life such as obesity and type 2 diabetes. LBWT is also characterized by decreased glucose concentrations and decreased body fat content at birth. In the present studies we sought to increase growth and improve glucose production by supplementing with a high energy diet and to compare the changes in glucose catabolism in different skeletal muscle fiber types along with analyzing the ability to switch fuel substrates in LBWT and NBWT neonatal pigs. Increasing dietary energy increased longissimus dorsi (LD) weight as a percentage of bodyweight, regardless of growth status. In addition, during fasting glucose production was higher in LBWT compared to their NBWT siblings, regardless of diet. However, glucose concentration in LBWT were lower compared to NBWT neonatal pigs. Although glucose concentrations were lower in LBWT compared to NBWT pigs after a meal, glucose production rate was unchanged among LBWT and NBWT siblings fed either a high or low energy diet. This suggests that glucose uptake is increased in peripheral tissues of LBWT pigs. However, enzymes related to glycolysis in the LD and soleus of LBWT pigs had lower expression than their NBWT sibling. In addition, the enzyme responsible for the shift in fuel selection, pyruvate dehydrogenase kinase 4 (PDK4) was highly expressed in LBWT compared to NBWT neonatal pigs in both the LD and soleus. This would suggest a switch in glucose oxidation to fatty acid oxidation in the skeletal muscle of LBWT neonatal pigs. However, oxidation of fatty acids in both the soleus and LD of LBWT was reduced compared to NBWT neonatal pigs. In conclusion, lipid supplementation increased growth at the expense of lipid deposition in the liver and did not increase glucose production. Reduced glucose concentrations are not due to greater catabolism in skeletal muscle due to decreased expression of glycolytic genes and the addition of fatty acids did not spare glucose oxidation in the skeletal muscle of LBWT pigs.
434

Development of standardized dry roasting procedures for Virginia type peanuts

Khan, Jasim 08 October 2021 (has links)
Peanuts are grown around the world and in United States where most peanuts are consumed after roasting. Peanuts are roasted to a specified color on L*a*b* scale as it is correlated with quality and acceptability. Two batches of Virginia type peanuts were acquired, one normal and other a high oleic variety. A surface response model using the Box-Behnken design was developed for Behmor 2000AB and GeneCafe coffee roasters, for normal and high oleic peanuts respectively with sample size, roast time and power/temperature as dependent variables and L* as a response variable. The model for Behmor was not significant (p>0.05 and R2 =0.87) but with effect contribution of roast time while the GeneCafe model was significant (p<0.05 and R2=0.98) with multiple first and second order effect contributions from temperature and roast time. Each model was validated and Behmor was found to be more consistent and predictable compared to GeneCafe. Both varieties of peanuts were roasted on each roaster and tested for volatile analysis using SPME GC/MS with high variation observed within samples which may be caused by uneven roasting. The volatile results showed similar trends for seventeen compounds between normal and high oleic samples. The Behmor roaster was more effective at predictable roasting for 50 to 100 g sample and more validation is needed on GeneCafe to improve its model. The results can help with quality testing of new varieties of Virginia type peanuts quickly without relying on large sample size typically used in other lab scale studies. / Master of Science in Life Sciences / Peanuts are grown around the world and in United States where most of it is consumed as a confection. They are roasted to a specified color on scale as it is correlated with quality and optimization. We wanted to develop a method of small-scale peanut roasting that allows peanut breeders to roast and evaluate quality of small samples of peanuts. We used an optimization method to test two different coffee roasters for peanut roasting (Behmor and GeneCafe roasters), with normal and high oleic peanuts. Behmor was more sensitive to changes in roast time while GeneCafe was more sensitive to temperature, roast time and combined effects. The models were validated on each machine and Behmor was found to be more consistent and predictable compared to GeneCafe. Peanuts were roasted on each roaster and tested for aroma compounds. The aroma compounds were similar between normal and high oleic samples. The Behmor roaster was more effective at predictable roasting of peanuts with sample size ranging from 50 to 100 g. Our results allow us to predictably roast very small lots of peanuts to support determination of flavor quality for peanut breeding research.
435

A randomised controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma (or polyp) prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme: The seAFOod (Systematic Evaluation of Aspirin and Fish Oil) Polyp Prevention Trial

Hull, M.A., Sandell, A.C., Montgomery, A.A., Logan, R.F.A., Clifford, G.M., Rees, C.J., Loadman, Paul, Whitham, D. 07 2013 (has links)
Yes / The naturally-occurring omega (ω)-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) reduces colorectal adenoma (polyp) number and size in patients with familial adenomatous polyposis. The safety profile and potential cardiovascular benefits associated with ω-3 PUFAs make EPA a strong candidate for colorectal cancer (CRC) chemoprevention, alone or in combination with aspirin, which itself has recognized anti-CRC activity. Colorectal adenoma number and size are recognized as biomarkers of future CRC risk and are established as surrogate end-points in CRC chemoprevention trials. The seAFOod Polyp Prevention Trial is a randomized, double-blind, placebo-controlled, 2 × 2 factorial ‘efficacy’ study, which will determine whether EPA prevents colorectal adenomas, either alone or in combination with aspirin. Participants are 55–73 year-old patients, who have been identified as ‘high risk’ (detection of ≥5 small adenomas or ≥3 adenomas with at least one being ≥10 mm in diameter) at screening colonoscopy in the English Bowel Cancer Screening Programme (BCSP). Exclusion criteria include the need for more than one repeat endoscopy within the three-month BCSP screening period, malignant change in an adenoma, regular use of aspirin or non-aspirin non-steroidal anti-inflammatory drugs, regular use of fish oil supplements and concomitant warfarin or anti-platelet agent therapy. Patients are randomized to either EPA-free fatty acid 1 g twice daily or identical placebo AND aspirin 300 mg once daily or identical placebo, for approximately 12 months. The primary end-point is the number of participants with one or more adenomas detected at routine one-year BCSP surveillance colonoscopy. Secondary end-points include the number of adenomas (total and ‘advanced’) per patient, the location (left versus right colon) of colorectal adenomas and the number of participants re-classified as ‘intermediate risk’ for future surveillance. Exploratory end-points include levels of bioactive lipid mediators such as ω-3 PUFAs, resolvin E1 and PGE-M in plasma, urine, erythrocytes and rectal mucosa in order to gain insights into the mechanism(s) of action of EPA and aspirin, alone and in combination, as well as to discover predictive biomarkers of chemopreventive efficacy. The recruitment target is 904 patients. / Medical Research Council (MRC) and managed by the National Institute for Health Research (NIHR) on behalf of the MRC-NIHR partnership
436

Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on Notch signaling and gut microbiota

Piazzi, G., D'Argenio, G., Prossomariti, A., Lembo, V., Mazzone, G., Candela, M., Biagi, E., Brigidi, P., Vitaglione, P., Fogliano, V., D'Angelo, L., Fazio, C., Munarini, A., Belluzzi, A., Ceccarelli, C., Chieco, P., Balbi, T., Loadman, Paul, Hull, M.A., Romano, M., Bazzoli, F., Ricciardiello, L. 28 March 2014 (has links)
No / Inflammatory bowel diseases are associated with increased risk of developing colitis-associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid-free fatty acid (EPA-FFA) reduces polyp formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA-FFA are unknown in CAC. We tested the effectiveness of substituting EPA-FFA, for other dietary fats, in preventing inflammation and cancer in the AOM-DSS model of CAC. The AOM-DSS protocols were designed to evaluate the effect of EPA-FFA on both initiation and promotion of carcinogenesis. We found that EPA-FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA–FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β-catenin expression, whilst it increased apoptosis. In both arms, EPA-FFA treatment led to increased membrane switch from ω-6 to ω-3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA-FFA treated arms and AOM-DSS controls. Importantly, we found that EPA-FFA treatment restored the loss of Notch signaling found in the AOM-DSS control and resulted in the enrichment of Lactobacillus species in the gut microbiota. Taken together, our data suggest that EPA-FFA is an excellent candidate for CRC chemoprevention in CAC.
437

Lipidomic investigations into the phospholipid content and metabolism of various kinetoplastids

Roberts, Matthew D. January 2017 (has links)
This work expands the knowledge on phospholipid metabolism in the kinetoplastid parasites: T. brucei, T. cruzi, Leishmania spp. that cause neglected tropical diseases and the related non-human pathogenic Crithidia fasiculata. As a close relative of parasitic kinetoplasts, specifically Leishmania, it is hypothesised that Crithidia fasiculata possesses a similar lipid biosynthetic capability and therefore represent an attractive model organism. Database mining the Crithidia genome revealed the ability to biosynthesise all of the main phospholipid species. Utilising various lipidomic techniques, a high level of an ω-6 18:3 fatty acid was observed, alongside an uncommon Δ19:0 fatty acid that was later identified to be exclusive attributed to PE species. Sphingolipid metabolism was shown to resemble that of Leishmania and T. cruzi, given the exclusive production of inositol-phosphoceramide species and no sphingomyelin species being observed. Using labelled precursors, Crithidia were seen to uptake and incorporate extracellular inositol into both phosphatidylinositol and inositol-phosphoceramide species. Crithidia were also shown to utilise both the Kennedy pathway and methylation of phosphatidylethanolamine to form phosphatidylcholine. The phospholipidome of T. cruzi revealed several phosphatidylserine species for the first time, suggesting a functional phosphatidylserine synthase. Current knowledge of T.cruzi sphingolipid biosynthesis was also confirmed as only inositol xxxi phosphoceramide species were observed. The identification and subsequent characterisation of novel phosphonolipid species are reported for the first time. Utilising lipidomic methodologies and labelled precursors, the relative contribution of the intracellular inositol pools within bloodstream and procyclic T. brucei towards PI biosynthesis was examined. This highlighted that the synthesis/turnover rates for specific phosphatidylinositol and inositol-phosphoceramide species are unequal. Efforts to optimise media conditions highlighted that under reduced levels of serum/glucose/inositol, bloodstream T. brucei unexpectedly adjusts its inositol metabolism. The procyclic parasite exemplifies this fact, as under inositol/glucose deficient media conditions they appear to have adapted to utilising glucogenesis and inositol de-novo synthesis. This work highlights that these parasites are rapidly dividing, their unique features of lipid metabolism may be exploitable for drug discovery purposes.
438

Biochemical And Molecular Insights Into β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) From Plasmodium Falciparum

Kumar, Shailendra 10 1900 (has links)
Malaria, caused by Plasmodium, is one of the most devastating infectious diseases of the world in terms of mortality as well as morbidity (WHO, 2002). The development of resistance in the Plasmodium falciparum against the present antimalarials has made the situation very alarming (Trape et al., 2000). To combat this situation, new antimalarials as well as identification of new drug targets are urgently required. The discovery of the presence of type II fatty acid biosynthesis system in the malarial parasite has offered several promising new targets for this mission. This thesis describes the successful cloning of fabZ from Plasmodium falciparum, its expression in E. coli, single step affinity purification, kinetic characterization and most importantly discovery of two small molecule inhibitors (Sharma et al., 2003). The study was executed to gain insights into the structure and function of PfFabZ to get better understanding of the interactions with its substrate analogs, novel inhibitors and also acyl carrier protein (PfACP). The molecular details of the interactions of the two novel inhibitors were also determined. Lastly, the residues of PfFabZ important for the interaction with PfACP were successfully elucidated. Chapter 1 presents a brief review of the literature about the disease as well as the life cycle, biology and the metabolic pathways operational in malarial parasite, Plasmodium falciaparum. The discovery of type II FAS in P. falciparum and the aims and the scope of the thesis are also discussed. The quest of developing new antimalarials, study of the mechanism of actions of antimalarials such as quinine and its derivatives along with the major metabolic pathways (Purine, pyrimidine, phospholipids, carbohydrate metabolism, folate and heme biosynthesis pathways etc.) existing in P. falciparum are described in detail in this chapter. Origin and importance of apicoplast in P. falciaprum is also described in brief. For long, it was believed that Plasmodium spp. are incapable of de novo fatty acid synthesis but this view has undergone substantial revision due to the recent discovery of plant and bacterial type of fatty acid biosynthesis pathway in them (Surolia and Surolia, 2001). As this pathway is distinct from that of the human host it has accelerated the momentum for the discovery of new antimalarials (Surolia and Surolia, 2001). The Chapter also surveys the details of type II FAS in bacteria, particularly that of E. coli (Rock and Cronan, 1996). The dehydratase step which is the third step of fatty acid elongation cycle has been covered in considerable detail. Lastly, it focuses on the recent advancement in the understanding of fatty acid biosynthesis system in Plasmodium falciparum along with some inhibitors targeting the malarial FAS. As each enzyme of the Plasmodium FAS can serve as good antimalarial targets, my work focuses on the dehydratase step catalyzed by β-hydroxyacyl-ACP dehydratase (PfFabZ). Cloning, expression and kinetic characterization of PfFabZ forms the major content of Chapter 2. The PlasmoDB data base was searched for this gene and the mined out open reading frame contained sequence of the putative FabZ together with the bipartite leader polypeptide. Our aim was to clone the mature PfFabZ without the bipartite leader sequence. Amplification of the mature pffabZ using Plasmodium falciparum genomic DNA revealed the presence of an intron in the ORF and the gene was finally cloned by RT-PCR in pET-28a(+) vector. It was expressed with an N-terminal hexahistidine tag in BL-21(DE3) cells and purified to near homogeneity but the protein was insoluble and unstable. Truncation of 12 residues from the N-terminal end improved the stability and solubility of the protein by 3-5 fold. Truncated PfFabZ was used for all future experiments. FabZs from other sources are reported to be hexamer in solution but PfFabZ showed homodimeric arrangement in the conditions used for gel filtration as well as dynamic light scattering studies. Kinetics of PfFabZ was characterized using substrate analogs, β-hydroxybutryl-CoA (forward substrate) and Crotonoyl-CoA (reverse substrate). Both the forward and reverse reaction were thoroughly characterized by spectrophotometry and HPLC and the reverse reaction was found to be 7 times faster than the forward reaction. Km οf crotonoyl-CoA was calculated to be 86 µM and kcat/Km of 220 M-1s-1 whereas the Kmfor β-hydroxybutryl-CoA was found to be 199 µM and kcat/Kmof 80.2 M-1s-1. The kinetic data clearly indicates the higher affinity of PfFabZ for the reverse substrate. Chapter 3 describes the discovery of two small molecules inhibitors, NAS-21 and NAS-91 for PfFabZ, their detailed inhibition kinetics and their effect on the growth of Plasmodium falciparum in culture. These inhibitors were the first inhibitors to be reported for FabZ class of enzymes with an IC50 ranging below 15 µM. Both of them inhibited PfFabZ following competitive kinetics with respect to the substrates utilized for both the forward and reverse reactions. The inhibition data were analyzed by Lineweaver-Burk and Dixon plots and both inhibitors showed competitive inhibition kinetics with dissociation constant in submicromolar range. Binding constants for both the inhibitors were also determined by fluorescence titration method and were calculated to be 1.6 (± 0.04) X 106 M-1 for NAS-91 and 1.2 (± 0.03) X 106 M-1 for NAS-21. These inhibitors were checked on Plasmodium falciparum culture and both inhibited parasite growth with IC50 values of 7 µM and 100 µM for NAS-21 and NAS-91, respectively. They also inhibited the incorporation of [1,2-14C]-acetate in the fatty acids of the P. falciparum conforming the inhibition of fatty acid biosynthesis. FabZ class of enzymes are thought to contain His-Glu as a catalytic dyad. Based on the disparity in the arrangement of residues at the active site of the dimeric (Swarnamukhi et al., 2006) and hexameric forms of PfFabZ in the crystal structures (Kosteriva et al., 2005), we set out to elucidate the active site residues in PfFabZ which is described in Chapter 4. The role of each of the presumed active site residues His-133 and Glu-147 along with Arg-99 and His-98 were analyzed by chemical modification studies and site directed mutagenesis. Single and double mutants were prepared and the activity of the mutants was monitored by spectrophotometry and isothermal titration calorimetry (ITC). It was concluded that in PfFabZ, His-133 and Glu-147 makes the catalytic dyad, His-98 might be important in directing the substrate in correct orientation while Arg-99 is involved in maintaining the active site loop in proper orientation rather than taking direct part in catalysis. Chapter 4 also concludes that dimeric form of PfFabZ is inactive species and turns into active hexameric form in the presence of substrate. Chapter 5 describes the molecular details of NAS-21 and NAS-91 interactions with PfFabZ. The fact that both these compounds inhibited PfFabZ in competitive manner, prompted me to examine their interaction with the residues in the active site tunnel. Apart from the His-133 and Glu-147 catalytic dyad the only polar residue is His-98 and chemical modification and site directed mutagenesis studies were done to elucidate the interactions of these residues with NAS-21 and NAS-91. Both the inhibitors were able to protect the modification of histidines by DEPC in wild type PfFabZ, His-98-Ala mutant and His-133-Ala mutant but with differential strength, indicating that they do interact with histidines. The interaction of these inhibitors was further confirmed by determining the dissociation constants of wPfFabZ, His-98-Ala, His-133-Ala, His-98-Ala/His-133-Ala double mutant, Glu-147-Ala mutant by fluorescence titration method. The results obtained from chemical modification and fluorescence titration studies confirmed that NAS-21 interacts strongly with histidines, His-98 and His-133 but not with Glu-147. On the other hand NAS-91 interacts loosely with His-98 and His-133 but strongly with Glu-147. Chapter 5 concludes with the observation that both the inhibitors (NAS-21 and NAS-91) interact with the active site residues of PfFabZ, preventing the substrate to enter the active site tunnel. Acyl carrier protein (ACP) is a small acidic protein to which the acyl chain intermediates are tethered and shuttled from one enzyme to another for the completion of fatty acid elongation cycle. Whenever acyl carrier proteins are expressed in E. coli, they are present in three forms apo, holo and acyl-ACPs. Chapter 6 describes a novel method for the expression of histidine tagged PfACP in pure holo form, protocol for the cleavage of his-tag from PfACP by thrombin preparation of homogenous singly enriched ie PfACP [15N]-labeled or [13C]-labeled PfACP as well as doubly enriched [15N]-[13C] PfACP samples for its structure elucidation by NMR (Sharma et al., 2005). These studies also constituted reporting of a holo-ACP structure from any of the sources for the first time (Sharma, et. al. 2006). The purified pure holo-PfACP was further used for the interaction studies with PfFabZ. Earlier studies have shown that ACP interacts with FAS enzymes via helix II with conserved set of residues but the molecular details of the interactions are poorly known (Zhang, et. al., 2003). We have recently solved the NMR structure (Sharma, et. al., 2006) of PfACP and crystal structure of PfFabZ (Swarnamukhi, et. al., 2006). So, both the structures were docked using Cluspro server. Chapter 7 elucidates the roles of important residues on PfFabZ surface near the active site entry which are responsible for interacting with PfACP. The residues lining the active site entry were identified and mutated. The residues lining the active site tunnel of PfFabZ are Arg102, Lys104, Lys105, Lys123, Leu94, Phe95, Ala96, Gly97, Ile128, Ile145, Phe150 and Ala151. Charged residues were mutated to alanine and also to oppositely charged residues while the neutral residues were changed to charged residues. The interaction of PfFabZ mutants with PfACP was studied by ACP independent enzymatic assay and surface plasmon resonance (SPR) spectroscopy. It was concluded that PfFabZ and PfACP interaction is mainly governed by electrostatic interaction made by the charged residues (Lys104 being the most important residue) and is fine tuned by hydrophobic interactions. Chapter 8 summarizes the findings of the thesis. FabZ from Plasmodium falciparum was cloned and biochemically characterized. Two inhibitors for this enzyme were discovered and their molecular details of binding to PfFabZ were elucidated. The presence of catalytic dyad was confirmed and finally the residues of PfFabZ important for interaction with PfACP were elucidated. Appendix I describes the inhibition of PfENR (enoyl ACP reductase), the rate limiting and the fourth enzyme of the fatty acid elongation pathway by green tea extracts. Three tea catechins (EGCG, EGC and ECG) and two plant polyphenols (quercetin and buteine) were selected for the inhibition study. All the catechins inhibited PfENR potently with Ki values in nanomolar range. Among the five compounds studied, EGCG was found to be the best inhibitor. All of them blocked the NADH binding site showing competitive kinetics with respect to NADH and uncompetitive kinetics with crotonoyl-CoA, the substrate analog. Most importantly, the catechins potentiated the inhibition of PfENR by triclosan, a well known PfENR inhibitor. We also report that in the presence of tea catechins triclosan behaves as a slow-tight binding inhibitor of PfENR. The overall inhibition constant of triclosan in the presence of EGCG was calculated to be 2pM which is 50 times better than the earlier reported values with NAD+ (Kapoor, et. al., 2004).
439

Faktory ovlivňující metabolismus glukózy a zánětlivou reakci u kriticky nemocných pacientů / Factors affecting glucose metabolism and inflammatory response in critically ill patients

Kotulák, Tomáš January 2014 (has links)
Hyperglycemia in critically ill patients was considered for many years an adaptive response to stress conditions being present in both patients with and without previous history of diabetes. Hyperglycemia is caused mainly by peripheral insulin resistance induced by the factors acting counteracting insulin signalling at the postreceptor level. Furthermore, hyperglycemia itself can then increase serum levels of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-6 (Il-6) and interleukin-8 (Il- 8) and others. On the contrary, peripheral insulin resistance induced by pro- inflammatory cytokines may further potentiate hyperglycemia. White adipose tissue represents in addition to its energy storage function also a very active endocrine active organ. In addition to regulation of a number of metabolic processes it also significantly modulates the inflammatory response. In critically ill patients, adipose tissue changes its morphology, i.e. the adipocytes are shrinking and adipose tissue is abundantly infiltrated by macrophages. Paradoxically, overweight and obese critically ill patients have lower mortality than underweight, lean and morbidly obese subjects. In our studies, we selected population of the patients undergoing elective major cardiac surgery with extracorporeal...
440

Heart-Fatty Acid Binding Protein und α-Synuklein im Serum als mögliche Markerkandidaten für Parkinson und Demenz / Heart-fatty acid binding protein and α-synuclein in blood serum as possible biomarker candidates for Parkinson's disease and dementia

Willner, Markus 07 March 2018 (has links)
No description available.

Page generated in 0.0601 seconds