• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Total Long-Chain n-3 Fatty Acid Intake and Food Sources in the United States Compared to Recommended Intakes: NHANES 2003–2008

Richter, Chesney K., Bowen, Kate J., Mozaffarian, Dariush, Kris-Etherton, Penny M., Skulas-Ray, Ann C. 27 September 2017 (has links)
The American Heart Association recommends consuming fish (particularly oily fish) at least two times per week, which would provide ae 0.5 g/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) for cardiovascular disease risk reduction. Previous analyses indicate that this recommendation is not being met; however, few studies have assessed different ethnicities, subpopulations requiring additional n-3 fatty acid intake (i.e., children and pregnant and/or lactating women), or deciles of intake. Data from the National Health and Nutrition Examination Survey 2003-2008 was used to assess n-3 fatty acid intake from foods and supplements in the US population, according to age, sex, and ethnicity. A unique "EPA equivalents" factor, which accounts for potential conversion of shorter-chain n-3 fatty acids, was used to calculate total long-chain n-3 fatty acid intake. Data are reported for 24,621 individuals. More than 90% consumed less than the recommended 0.5 g/day from food sources (median = 0.11 g/day; mean = 0.17 g/day). Among the top 15% of n-3 fatty acid consumers, fish was the largest dietary contributor (71.2%). Intake was highest in men aged 20 years or more, and lowest in children and women who are or may become pregnant and/or are lactating. Among ethnicities, intake was lowest in Mexican-Americans. Only 6.2% of the total population reported n-3 fatty acid supplement use, and this did not alter median daily intake. Additional strategies are needed to increase awareness of health benefits (particularly among Mexican-Americans and women of childbearing age) and promote consumption of oily fish or alternative dietary sources to meet current recommendations.
2

Systemic and Intracellular Trafficking of Long-chain Fatty Acids in Lactating Dairy Cattle

Stamey, Jennifer Anne 17 July 2012 (has links)
Marine oils are used as ration additives to provide omega-3 fatty acids to dairy cows. Supplementing dairy cows with omega-3 fatty acid-rich feeds does not easily increase quantities in milk fat of dairy cows because polyunsaturated fatty acids are biohydrogenated in the rumen. Lipid encapsulation of omega-3 fatty acids provides protection from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Lactating cows were supplemented with rumen protected algae biomass or algal oil in a 4 × 4 Latin Square. Feeding lipid encapsulated algae supplements increased docosahexaenoic acid content in milk fat while not adversely impacting milk fat yield; however, docosahexaenoic acid was preferentially esterified into plasma phospholipid, limiting its incorporation into milk fat. In the second study, triglyceride emulsions of oils enriched in either oleic, linoleic, linolenic, or docosahexaenoic acids were intravenously infused to avoid confounding effects of triglyceride esterification patterns in the small intestine and to compare mammary uptake. Milk transfer of fatty acids delivered as intravenous triglyceride emulsions was reduced with increased chain length and unsaturation. Increased target fatty acids were evident in plasma phospholipid, suggesting re-esterification in the liver. Transfer efficiencies were 37.8, 27.6, and 10.9±5.4% for linoleic, linolenic, and docosahexaenoic acid. Both liver and mammary mechanisms may regulate transfer of long-chain polyunsaturates. Intracellular fatty acid binding proteins (FABP) are cytoplasmic proteins that are hypothesized to be essential for fatty acid transport and metabolism by accelerating longchain fatty acid uptake and targeting to intracellular organelles, such as the endoplasmic reticulum for triglyceride esterification. FABP3 mRNA is highly expressed in bovine mammary and heart tissue, but is not present in MAC-T cells, a bovine mammary epithelial cell line. When overexpressed in MAC-T cells, FABP3 does not appear to be rate-limiting for fatty acid uptake in vitro and did not alter lipid metabolism. The function of FABP3 in the mammary gland remains unclear. / Ph. D.
3

An Energy-Restricted, Low Glycemic Index Diet with Omega-3 Fatty Acid and Vitamin D3 Supplementation in Adults with Metabolic Syndrome

Thomas, Robert Bradley 09 May 2012 (has links)
This purpose of this thesis was to develop a pilot study to determine if omega-3 fatty acids and vitamin D3 will improve body weight loss and improve risk factors for Metabolic Syndrome within a weight loss program. Risk factors include obesity, hypertension, hyperglycemia, and dyslipidemia. Thirty-five men and women between 18 and 65 years of age with risk factors for Metabolic Syndrome were recruited for this study. All participants followed an energy-restricted, low glycemic-index based diet and exercise program for 16 weeks. Half of these participants received omega-3 fatty acid and vitamin D3 supplements. In those that received these supplements, it was seen that their serum 25-hydroxyvitamin D2/D3 levels and incorporation of docosahexaenoic acid and eicosapentaenoic acid into red blood cell phospholipids improved. The effect of supplementation on changes to body weight and risk factors for Metabolic Syndrome did not reach significance (p<0.05). It was however demonstrated, that an energy-restricted, low glycemic index diet with exercise was effective in inducing weight loss and improving Metabolic Syndrome risk factors with a 50% reduction in participants who had the criteria for diagnosis of Metabolic Syndrome by week 16.
4

Prostate Cancer and Alpha-linolenic Acid

Carleton, Amanda 15 December 2010 (has links)
The objectives were to 1) conduct a meta-analysis to assess the association between alpha-linolenic acid (ALA) and prostate cancer; 2) analyze a trial of ALA on coronary heart disease with PSA as a post hoc outcome; 3) assess the effect of trial serum and also ALA directly on LNCaP cell growth. 1) The ALA meta-analysis of prospective and case-control studies showed no overall effect on prostate cancer. However, removal of one study from the analysis of prospective studies changed the result to a significant protective effect (RR=0.91; 95%CI:0.83,0.99). 2) No significant treatment difference was seen in the change in PSA in the randomized controlled trial. 3) The ALA treatment serum from the clinical trial did not affect LNCaP cell growth. However, ALA decreased LNCaP cell growth in a dose dependent manner when added to cell culture. The results provide no positive evidence for an effect of ALA on prostate cancer.
5

Prostate Cancer and Alpha-linolenic Acid

Carleton, Amanda 15 December 2010 (has links)
The objectives were to 1) conduct a meta-analysis to assess the association between alpha-linolenic acid (ALA) and prostate cancer; 2) analyze a trial of ALA on coronary heart disease with PSA as a post hoc outcome; 3) assess the effect of trial serum and also ALA directly on LNCaP cell growth. 1) The ALA meta-analysis of prospective and case-control studies showed no overall effect on prostate cancer. However, removal of one study from the analysis of prospective studies changed the result to a significant protective effect (RR=0.91; 95%CI:0.83,0.99). 2) No significant treatment difference was seen in the change in PSA in the randomized controlled trial. 3) The ALA treatment serum from the clinical trial did not affect LNCaP cell growth. However, ALA decreased LNCaP cell growth in a dose dependent manner when added to cell culture. The results provide no positive evidence for an effect of ALA on prostate cancer.
6

Vergleichende Untersuchungen des Fettsäuremusters der Erythrozytenmembran und des Plasmas von Hunden nach Supplementierung mit ω-3 Fettsäuren

Stöckel, Katja 13 April 2022 (has links)
Einleitung: Der diätetische Einsatz von ω-3 Fettsäuren wird für viele Erkrankungen sowohl des Menschen als auch der Tiere mit positiven Effekten verbunden. Auch für Tumorerkrankungen wird, insbesondere bei einem niedrigen Gehalt an Vitamin E, eine positive Wirkung von ω-3 Fettsäuren postuliert. Die Aufnahme der ω-3 Fettsäuren beim Hund aus dem Futter sowie die Inkorporation in das Gewebe wird durch viele verschiedene Faktoren beeinflusst. Um den potenziellen therapeutischen Nutzen einer Supplementierung des Futters mit ω-3 Fettsäuren abschätzen zu können, ist es unerlässlich zu wissen, in welchem Ausmaß und in welcher Geschwindigkeit die Inkorporation der ω-3 Fettsäuren aus dem Futter beim Hund erfolgt. Gleichzeitig stellt sich die Frage nach einem geeigneten Indikator, um den Erfolg einer Supplementierung mit ω-3 Fettsäuren zu überprüfen. Zielstellung: In der vorliegenden Dissertation sollten deshalb die folgenden Fragestellungen untersucht werden: a) Kann ein ω-3 Fettsäuresupplement die Fettsäurezusammensetzung im Gewebe genauso effektiv verändern wie ein kommerzielles, ω-3 Fettsäure-reiches Futter? b) Wie gestaltet sich der zeitliche Verlauf der Inkorporation von diätetisch verabreichten ω-3 Fettsäuren in der Erythrozytenmembran (EM) und im Plasma? c) Können die im Plasma zu beobachtenden Veränderungen als Indikator für die Veränderungen in der EM dienen? Material & Methoden: 30 Beagle wurden in 3 Gruppen à 10 Tiere eingeteilt und für 12 Wochen unterschiedlich gefüttert. Die Kontrollgruppe (CONT) erhielt ein kommerzielles Futter, das wenig ω-3 Fettsäuren enthält, eine Versuchsgruppe bekam zusätzlich ein ω-3 Fettsäuren-Konzentrat (ADD) und die zweite Versuchsgruppe erhielt ein kommerzielles Futter mit einem hohen Anteil an ω-3 Fettsäuren (FO). Anschließend wurde ADD für weitere 4 Wochen wie CONT gefüttert. Die Fettsäurezusammensetzung der EM und des Plasmas wurde nach 0, 1, 2, 4, 8 und 12 Wochen und bei ADD zusätzlich auch nach 14 und 16 Wochen per Gaschromatografie analysiert. Der Vitamin E-Gehalt des Plasmas in ADD und CONT wurde per Hochleistungsflüssigkeitsdruckchromatografie bestimmt. Ergebnisse: In unserer Studie erwies sich der Zusatz eines ω-3 Fettsäure-Supplementes zu einem Grundfutter ohne EPA und DHA genau so effektiv wie eine komplette Futterumstellung auf ein kommerzielles ω-3 fettsäurereiches Futter. Dies ist insbesondere für die Therapie von Hunden, die ein Spezialfutter erhalten ein wichtiger Vorteil. Auch können Supplemente einfacher an den jeweiligen individuellen Bedarf angepasst und dosiert werden. Bereits nach einer Woche konnte bei ADD und FO ein signifikanter Anstieg der Gesamt ω-3 Fettsäuren, EPA, und DHA in der EM und im Plasma beobachtet werden. Innerhalb von zwei (ADD) bzw. vier (FO) Wochen war das Plateau des Anstieges der ω-3 Fettsäuren im Plasma erreicht, nach acht Wochen auch in der EM. Das Plateau für DHA wurde im Plasma nach zwei (FO) bzw. vier (ADD) Wochen erreicht, in der EM nach acht Wochen. Das Plateau für EPA wurde im Plasma nach zwei Wochen erreicht, in der EM nach zwei (ADD), bzw. vier (FO) Wochen. Nach der Umstellung von ADD auf CONT-Fütterung ging der Gehalt an EPA im Plasma innerhalb von zwei Wochen auf den Ausgangswert zurück. Der Gehalt an EPA in der EM und der Gehalt an DHA im Plasma und in der EM erreichte das Ausgangsniveau innerhalb der vier Wochen der Washoutperiode nicht wieder. Der Gehalt an Arachidonsäure (AA) und der gesamt ω-6 Fettsäuren in den EM und im Plasma in ADD und FO sank innerhalb des Versuchszeitraumes signifikant, jedoch war die Reduktion nach 12 Wochen noch nicht abgeschlossen. Die Vitamin E Konzentration in ADD und CONT im Plasma zeigte keine signifikanten Änderungen. Schlussfolgerungen: Auf Grund von möglichen individuellen Unterschieden im Fettsäuremuster sollte der Erfolg einer Supplementierung mit ω-3 Fettsäuren immer in Relation zum individuellen Ausgangswert bewertet werden. Unabhängig von der Art der Supplementierung ist ein signifikanter Anstieg von EPA, DHA und der gesamt ω-3 Fettsäuren innerhalb von einer Woche zu erwarten. Hierbei korreliert die Entwicklung im Plasma sehr gut mit der der EM. Die Reduktion von AA und der gesamt ω-6 Fettsäuren erfolgt dagegen über einen wesentlich längeren Zeitraum. Um diese beobachten zu können, ist die Analyse der EM zu bevorzugen.:Abkürzungsverzeichnis ..................................................................................... III 1. Einleitung ....................................................................................................... 1 2. Literatur .......................................................................................................... 3 2.1. Fettsäuren ................................................................................................... 3 2.1.1. Aufbau und Eigenschaften ....................................................................... 3 2.1.2. Vorkommen und Synthese ....................................................................... 4 2.1.3. Funktion der Fettsäuren im Körper .......................................................... 5 2.1.4. Rolle der ω-3 Fettsäuren bei entzündlichen Prozessen .......................... 6 2.2. Tumorerkrankungen .................................................................................... 7 2.2.1 Rolle der ω-3 Fettsäuren bei Tumorerkrankungen .................................... 8 2.3 Rolle der ω-3 Fettsäuren bei anderen Erkrankungen ................................. 12 2.4. Diätetische Versorgung mit ω-3 Fettsäuren ............................................... 12 2.4.1. Inkorporation der ω-3 Fettsäuren in das Gewebe ................................... 13 2.4.2. Indikatoren für den Fettsäurestatus des Organismus .............................. 15 2.5. Vitamin E ..................................................................................................... 16 2.5.1. Aufnahme in den Körper ........................................................................... 16 2.5.2. Funktion von Vitamin E ............................................................................. 17 2.5.3. Hypovitaminose E ..................................................................................... 18 2.5.4. Hypervitaminose E .................................................................................... 18 2.5.5. Supplementierung mit Vitamin E bei Erkrankungen .................................. 18 3. Fragestellungen ............................................................................................... 19 4. Publikationen .................................................................................................... 20 4.1. Publikation 1 .................................................................................................. 20 Stellungnahme zum Eigenanteil der Arbeit an der Publikation 1 .......................... 20 4.2. Publikation 2 .................................................................................................. 32 Stellungnahme zum Eigenanteil der Arbeit an der Publikation 2 .......................... 32 5. Diskussion ......................................................................................................... 43 5.1. Würdigung der Versuchsanstellung ................................................................ 43 5.2. Ausgangssituation ........................................................................................... 45 5.3. Inkorporation der ω-3 Fettsäuren .................................................................... 47 5.4. Auswirkungen auf ω-6 Fettsäuren ................................................................... 49 5.5. Nachteile einer Supplementierung mit ω-3 Fettsäuren ................................... 50 5.6. Effektivität des ω-3 Fettsäure-Additivs ............................................................ 51 5.7. Einsatz von ω-3 Fettsäuren bei Tumorpatienten ............................................. 54 5.8. Einfluss von Vitamin E ..................................................................................... 56 5.9. Indikatoren für den Erfolg einer Supplementierung mit ω-3 Fettsäuren .......... 58 5.10. Ausblick ......................................................................................................... 59 6. Schlussfolgerungen ............................................................................................ 60 7. Zusammenfassung ............................................................................................. 61 8. Summary ............................................................................................................ 63 9. Literaturverzeichnis ............................................................................................ 65 Danksagung ........................................................................................................... 83 / Introduction: Dietary supplementation with n-3 fatty acids is associated with positive effects on many diseases in humans and animals. A positive effect of n-3 fatty acids on cancer is discussed especially in combination with a low Vitamin E content. Bioavailability from food and incorporation of n-3 fatty acids into tissues is influenced by many different factors. In order to estimate the potential therapeutical use of n-3 fatty acid supplementation in dogs it is nessecary to know the extend and speed of the incorporation of dietary n-3 fatty acids into tissues. There is also need for a reliable indicator to monitor the success of n-3 fatty acid supplementation. Objective: We therefore sought to answer the following questions: a) Is a n-3 fatty acid additive as effective in changing tissue fatty acid profiles as a commercial n-3 fatty acid diet? b) How are n-3 fatty acids incorporated into erythrocyte membranes (EM) and plasma over time? c) Are plasma fatty acid profiles a suitable indicator for EM fatty acid profiles? Material & Methods: 30 Beagle dogs were divided into 3 groups with 10 dogs per group and fed different diets for 12 weeks. One group got a commercial diet with a low n-3 fatty acid content (CONT). One group got the CONT diet with an added n-3 fatty acid concentrate (ADD) and one group got a commercial diet rich in n-3 fatty acids. After the 12 week period ADD was fed an additional four weeks as CONT to observe washout effects. Fatty acid profiles of plasma and EM were analysed at week 0, 1, 2, 4, 8 and 12 and for ADD also at week 14 and 16 per gas chromatography. Vitamin E content was analysed in Plasma of ADD and CONT via high pressure liquid chromatography. Results: In our study the use of a n-3 fatty acid additive was as effective in changing tissue fatty acid profiles as a commercial diet rich in n-3 fatty acids. Especially for dogs already recieving specialized diets, this is an important advantage. Additives are also much easier to customise and dose according to individual needs. A significant increase of total n-3 fatty acids, EPA and DHA was seen in EM and in plasma after one week both in ADD and FO. For total n-3 fatty acids the plateau was reached in plasma after two (ADD) and four (FO) weeks and after eight weeks in EM. DHA reached its plateau in plasma after two (FO) and four (ADD) weeks and after eight weeks in EM. For EPA the plateau was reached after two weeks in plasma and in EM after two (ADD) and four (FO) weeks. During the washout period in ADD EPA reached its baseline levels after two weeks in plasma but not within four weeks in EM. Total n-3 fatty acids and DHA in both plasma and EM also did not return to baseline levels within the four weeks of the washout period. Arachidonic acid (AA) and total n-6 fatty acids were significantly reduced in both ADD and FO during the trial, but their decline was not completed within the 12 weeks of the trial period. Vitamin E content in ADD and CONT showed no significant changes. Conclusion: Due to possible individual differences in fatty acid profiles success of dietary n-3 fatty acid supplementation should always be measured in relation to individual fatty acid profiles before the start of dietary supplementation. Both the additive and the commercial n-3 fatty acid diet led to an increase in EPA, DHA and total n-3 fatty acids within one week. This could be seen clearly in both plasma and EM. Changes in EM also correlated well with changes in plasma. For AA and total n-6 Fatty acids it took much longer to decline. In order to monitor this decline analysis of EM should be preferred.:Abkürzungsverzeichnis ..................................................................................... III 1. Einleitung ....................................................................................................... 1 2. Literatur .......................................................................................................... 3 2.1. Fettsäuren ................................................................................................... 3 2.1.1. Aufbau und Eigenschaften ....................................................................... 3 2.1.2. Vorkommen und Synthese ....................................................................... 4 2.1.3. Funktion der Fettsäuren im Körper .......................................................... 5 2.1.4. Rolle der ω-3 Fettsäuren bei entzündlichen Prozessen .......................... 6 2.2. Tumorerkrankungen .................................................................................... 7 2.2.1 Rolle der ω-3 Fettsäuren bei Tumorerkrankungen .................................... 8 2.3 Rolle der ω-3 Fettsäuren bei anderen Erkrankungen ................................. 12 2.4. Diätetische Versorgung mit ω-3 Fettsäuren ............................................... 12 2.4.1. Inkorporation der ω-3 Fettsäuren in das Gewebe ................................... 13 2.4.2. Indikatoren für den Fettsäurestatus des Organismus .............................. 15 2.5. Vitamin E ..................................................................................................... 16 2.5.1. Aufnahme in den Körper ........................................................................... 16 2.5.2. Funktion von Vitamin E ............................................................................. 17 2.5.3. Hypovitaminose E ..................................................................................... 18 2.5.4. Hypervitaminose E .................................................................................... 18 2.5.5. Supplementierung mit Vitamin E bei Erkrankungen .................................. 18 3. Fragestellungen ............................................................................................... 19 4. Publikationen .................................................................................................... 20 4.1. Publikation 1 .................................................................................................. 20 Stellungnahme zum Eigenanteil der Arbeit an der Publikation 1 .......................... 20 4.2. Publikation 2 .................................................................................................. 32 Stellungnahme zum Eigenanteil der Arbeit an der Publikation 2 .......................... 32 5. Diskussion ......................................................................................................... 43 5.1. Würdigung der Versuchsanstellung ................................................................ 43 5.2. Ausgangssituation ........................................................................................... 45 5.3. Inkorporation der ω-3 Fettsäuren .................................................................... 47 5.4. Auswirkungen auf ω-6 Fettsäuren ................................................................... 49 5.5. Nachteile einer Supplementierung mit ω-3 Fettsäuren ................................... 50 5.6. Effektivität des ω-3 Fettsäure-Additivs ............................................................ 51 5.7. Einsatz von ω-3 Fettsäuren bei Tumorpatienten ............................................. 54 5.8. Einfluss von Vitamin E ..................................................................................... 56 5.9. Indikatoren für den Erfolg einer Supplementierung mit ω-3 Fettsäuren .......... 58 5.10. Ausblick ......................................................................................................... 59 6. Schlussfolgerungen ............................................................................................ 60 7. Zusammenfassung ............................................................................................. 61 8. Summary ............................................................................................................ 63 9. Literaturverzeichnis ............................................................................................ 65 Danksagung ........................................................................................................... 83

Page generated in 0.0597 seconds