• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelings, Simulations, Measurements and Comparisons of Monopole-Type Blade Antennas

January 2014 (has links)
abstract: Two commercial blade antennas for aircraft applications are investigated. The computed results are compared with measurements performed in the ASU ElectroMagnetic Anechoic Chamber (EMAC). The antennas are modeled as mounted on a 13-inch diameter circular ground plane, which corresponds to that of the measurements. Two electromagnetic modeling codes are used in this project to model the antennas and predict their radiation and impedance characteristics: FEKO and WIPL-D Pro. A useful tool of WIPL-D Pro, referred to as WIPL-D Pro CAD, has proven to be convenient for modeling complex geometries. The classical wire monopole was also modeled using high-frequency methods, GO and GTD/UTD, mounted on both a rectangular and a circular ground plane. A good agreement between the patterns of this model and FEKO has been obtained. The final versions of the solvers used in this work are FEKO (Suit 6.2), WIPL-D Pro v11 and WIPL-D Pro CAD 2013. Features of the simulation solvers are presented and compared. Simulation results of FEKO and WIPL-D Pro have good agreements with the measurements for radiation and impedance characteristics. WIPL-D Pro has a much higher computational efficiency than FEKO. / Dissertation/Thesis / M.S. Electrical Engineering 2014
2

Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element

Kawser, Mohammad Tawhid 21 July 2005 (has links)
Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing and multi-function radar systems will find it useful if there is dual band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results. / Master of Science
3

Analyse et modélisation de rayonnement électromagnétique des réseaux CPL / Analysis and modeling of the electromagnetic radiation of PLC networks

Liakouti, Achraf 11 May 2017 (has links)
L'usage des câbles électriques comme support de transmission de données numériques en vue d'applications comme l'accès à Internet ou la domotique, est certes très attractif. Cependant, les rayonnements électromagnétiques (EM) non intentionnels, engendrés par les systèmes filaires lors d’une transmission CPL, peuvent être une source de pollution EM et constituent un problème gênant de compatibilité électromagnétique (CEM). L'évaluation de ces rayonnements en champ proche revêt donc un intérêt certain.Dans ce manuscrit, le travail de recherche effectué, consiste à modéliser le rayonnement électromagnétique engendré par les conducteurs filaires utilisés par la technologie des courants porteur en ligne (CPL). En effet, l’estimation du rayonnement d’un réseau CPL de point de vue de la CEM, s’avère très importante pour la prédiction des niveaux d’émissions rayonnées. Les valeurs des champs rayonnés par le réseau CPL sont parfaitement définies si la distribution du courant est déterminée, en pratique, l'accès à la mesure de ces courants est très difficile voire impossible.On propose, donc dans ce mémoire une approche simplifiée des équations intégrales des champs électromagnétiques afin de quantifier convenablement le rayonnement EM émis par les systèmes filaires avec un minimum d’informations mesurées. Ce modèle est capable de traiter des cas pour lesquels l’identification du courant le long des conducteurs est compliquée et numériquement fastidieuse à obtenir avec les codes de simulation existants (FEKO, NEC,… etc.). Notre modèle a été largement validé, soit par simulation, en utilisant le logiciel Feko, ou bien expérimentalement à travers une étude comparative effectuée sur différents cas tests. / The use of electric cables as a support for transmitting digital data for applications such as Internet access or home automation is certainly very attractive. However, unintentional electromagnetic radiation (EM) from such wire systems for PLC transmission may be a source of EM pollution and a problem of electromagnetic compatibility (EMC). Therefore, the evaluation of the corresponding radiations in the near-field zone is of a certain interest. In this manuscript, a mathematical model for estimation of the electromagnetic radiation from wire conductors used by the PLC technology is presented. From the EMC standpoint, the radiation of a PLC network is observed from the aspect of the emission levels. The corresponding radiated values of the fields may be appropriately determined if the current distribution in the PLC network is known. However, in practice the approach to measuring these currents is very difficult or even impossible. Therefore, a simplified approach based on the integral equations of the electromagnetic fields is proposed in order to adequately quantify EM radiation from PLC wire conductors in cases of least measured data. Also, this model may be applied in cases where estimation of current distribution is numerically difficult even by using existing numerical software (FEKO, NEC, etc.). The proposed model is validated either by simulations compared to FEKO software, or experimentally through a comparative test case studies.
4

Computation Of Radar Cross Sections Of Complex Targets By Shooting And Bouncing Ray Method

Ozgun, Salim 01 September 2009 (has links) (PDF)
In this study, a MATLAB&reg / code based on the Shooting and Bouncing Ray (SBR) algorithm is developed to compute the Radar Cross Section (RCS) of complex targets. SBR is based on ray tracing and combine Geometric Optics (GO) and Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The presented algorithm is examined in two parts / the first part addresses a new aperture selection strategy named as &ldquo / conformal aperture&rdquo / , which is proposed and formulated to increase the performance of the code outside the specular regions, and the second part is devoted to testing the multiple scattering and shadowing performance of the code. The conformal aperture approach consists of a configuration that gathers all rays bouncing back from the target, and calculates their contribution to RCS. Multiple scattering capability of the algorithm is verified and tested over simple shapes. Ray tracing part of the code is also used as v a shadowing algorithm. In the first instance, simple shapes like sphere, plate, cylinder and polyhedron are used to model simple targets. With primitive shapes, complex targets can be modeled up to some degree. Later, patch representation is used to model complex targets accurately. In order to test the whole code over complex targets, a Computer Aided Design (CAD) format known as Stereo Lithography (STL) mesh is used. Targets that are composed in CAD tools are imported in STL mesh format and handled in the code. Different sweep geometries are defined to compute the RCS of targets with respect to aspect angles. Complex targets are selected according to their RCS characteristics to test the code further. In addition to these, results are compared with PO, Method of Moments (MoM) and Multilevel Fast Multipole Method (MLFMM) results obtained from the FEKO software. These comparisons enabled us to improve the code as possible as it is.
5

Umělá neuronová síť pro modelování polí uvnitř automobilu / Artificial neural network for modeling electromagnetic fields in a car

Kostka, Filip January 2014 (has links)
The project deals with artificial neural networks. After designing and debugging the test data set and the training sample set, we created a multilayer perceptron network in the Neural NetworkToolbox (NNT) of Matlab. When creating networks, we used different training algorithms and algorithms improving the generalization of the network. When creating a radial basis network, we did not use the NNT, but a specific source code in Matlab was written. Functionality of neural networks was tested on simple training and testing patterns. Realistic training data were obtained by the simulation of twelve monoconic antennas operating in the frequency range from 2 to 6 GHz. Antennas were located inside a mathematical model of Octavia II. Using CST simulations, electromagnetic fields in a car were obtained. Trained networks are described by regressive characteristics andthe mean square error of training. Algorithms improving generalization are applied on the created and trained networks. The performance of individual networks is mutually compared.

Page generated in 0.0305 seconds