• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4909
  • 619
  • 162
  • 162
  • 161
  • 145
  • 139
  • 125
  • 62
  • 17
  • 10
  • 7
  • 7
  • 4
  • 3
  • Tagged with
  • 5732
  • 2745
  • 2058
  • 1801
  • 1764
  • 1084
  • 1038
  • 952
  • 759
  • 577
  • 560
  • 519
  • 408
  • 389
  • 388
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Neutrino velocity measurement with the OPERA experiment in the CNGS beam

Brunetti, Giulia <1981> 20 May 2011 (has links)
In the thesis is presented the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam, a muon neutrino beam produced at CERN. The OPERA detector observes muon neutrinos 730 km away from the source. Previous measurements of the neutrino velocity have been performed by other experiments. Since the OPERA experiment aims the direct observation of muon neutrinos oscillations into tau neutrinos, a higher energy beam is employed. This characteristic together with the higher number of interactions in the detector allows for a measurement with a much smaller statistical uncertainty. Moreover, a much more sophisticated timing system (composed by cesium clocks and GPS receivers operating in “common view mode”), and a Fast Waveform Digitizer (installed at CERN and able to measure the internal time structure of the proton pulses used for the CNGS beam), allows for a new measurement with a smaller systematic error. Theoretical models on Lorentz violating effects can be investigated by neutrino velocity measurements with terrestrial beams. The analysis has been carried out with blind method in order to guarantee the internal consistency and the goodness of each calibration measurement. The performed measurement is the most precise one done with a terrestrial neutrino beam, the statistical accuracy achieved by the OPERA measurement is about 10 ns and the systematic error is about 20 ns.
272

Measurement of branching fractions and CP violation for charmless charged two-body B decays at LHCb

Perazzini, Stefano <1984> 16 March 2012 (has links)
Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> Kpi) = −0.074 +/- 0.033 +/- 0.008 and ACP(Bs -> piK) = 0.15 +/- 0.19 +/- 0.02 are measured. Using 320/pb of integrated luminosity collected during 2011 these measurements are updated to ACP(B0 -> Kpi) = −0.088 +/- 0.011 +/- 0.008 and ACP(Bs -> piK) = 0.27 +/- 0.08 +/- 0.02. In addition, the branching ratios BR(B0 -> K+K-) = (0.13+0.06-0.05 +/- 0.07) x 10^-6 and BR(Bs -> pi+pi-) = (0.98+0.23-0.19 +/- 0.11) x 10^-6 are measured. Finally, using a sample of 370/pb of integrated luminosity collected during 2011, the relative branching ratios BR(B0 -> pi+pi-)/BR(B0 -> Kpi) = 0.262 +/- 0.009 +/- 0.017, (fs/fd)BR(Bs -> K+K-)/BR(B0 -> Kpi)=0.316 +/- 0.009 +/- 0.019, (fs/fd)BR(Bs -> piK)/BR(B0 -> Kpi) = 0.074 +/- 0.006 +/- 0.006 and BR(Lambda_b -> ppi)/BR(Lambda_b -> pK)=0.86 +/- 0.08 +/- 0.05 are determined.
273

Identified primary hadron spectra with the TOF detector of the ALICE experiment at LHC

Guerzoni, Barbara <1982> 16 March 2012 (has links)
In this thesis the analysis to reconstruct the transverse momentum p_{t} spectra for pions, kaons and protons identified with the TOF detector of the ALICE experiment in pp Minimum Bias collisions at $\sqrt{s}=7$ TeV was reported. After a detailed description of all the parameters which influence the TOF PID performance (time resolution, calibration, alignment, matching efficiency, time-zero of the event) the method used to identify the particles, the unfolding procedure, was discussed. With this method, thanks also to the excellent TOF performance, the pion and kaon spectra can be reconstructed in the 0.5<p_{t}<2.5 GeV/c range, while the protons can be measured in the interval 0.8<p_{t}<4.0 GeV/c. To prove the robustness of these results, a comparison with the spectra obtained with a $3\sigma$ cut PID procedure, was reported, showing an agreement within 5%. The estimation of the systematic uncertainties was described. The reported spectra provide very useful information to tune the Monte Carlo generators that, as was shown, are not able to describe $\pi$, $K$ and $p$ production over the full momentum range. The same limitation for the theoretical models in describing the data was observed when comparing with the Monte Carlo predictions the $K/\pi$ and $p/\pi$ ratios, as obtained with the TOF analysis. Finally, the comparison between the TOF results and the spectra obtained with analyses that use other ALICE PID detectors and techniques to extend the identified spectra to a wider $p_{t}$ range was reported, showing an agreement within 6\%.
274

Sea-Level climate variability in the Mediterranean Sea

Bonaduce, Antonio <1980> 14 May 2012 (has links)
Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011). The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate. At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics. The research strategy adopted in this work to approach such an interesting and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability, tendency and trend and to quantify them.
275

Satellite and in situ data integrated analysis to study the upper ocean an coastal environment of the Italian seas / Studio della fascia costiera e dei mari italiani mediante l'analisi integrata di dati da satellite e in situ

Rinaldi, Eleonora <1981> 14 May 2012 (has links)
The thesis objectives are to develop new methodologies for study of the space and time variability of Italian upper ocean ecosystem through the combined use of multi-sensors satellite data and in situ observations and to identify the capability and limits of remote sensing observations to monitor the marine state at short and long time scales. Three oceanographic basins have been selected and subjected to different types of analyses. The first region is the Tyrrhenian Sea where a comparative analysis of altimetry and lagrangian measurements was carried out to study the surface circulation. The results allowed to deepen the knowledge of the Tyrrhenian Sea surface dynamics and its variability and to defined the limitations of satellite altimetry measurements to detect small scale marine circulation features. Channel of Sicily study aimed to identify the spatial-temporal variability of phytoplankton biomass and to understand the impact of the upper ocean circulation on the marine ecosystem. An combined analysis of the satellite of long term time series of chlorophyll, Sea Surface Temperature and Sea Level field data was applied. The results allowed to identify the key role of the Atlantic water inflow in modulating the seasonal variability of the phytoplankton biomass in the region. Finally, Italian coastal marine system was studied with the objective to explore the potential capability of Ocean Color data in detecting chlorophyll trend in coastal areas. The most appropriated methodology to detect long term environmental changes was defined through intercomparison of chlorophyll trends detected by in situ and satellite. Then, Italian coastal areas subject to eutrophication problems were identified. This work has demonstrated that satellites data constitute an unique opportunity to define the features and forcing influencing the upper ocean ecosystems dynamics and can be used also to monitor environmental variables capable of influencing phytoplankton productivity. / L'obiettivo di questa tesi è lo studio della variabilità spazio temporale dei parametri chiave (temperatura, clorofilla e correnti) che descrivono lo stato dell'ecosistema marino dei mari Italiani attraverso un uso integrato di dati satellitari multi sensore e osservazioni in situ. Diversi tipologie di approcci e differenti dataset sono stati utilizzati per studiare la circolazione marina, l'impatto dei forzanti fisici sulla variabilità della biomassa fitoplantonica, e per definire una possibile metodologia di utilizzo di dati satellitari per lo studio della qualità delle acque. Sono stati scelti tre sottobacini dei Mari italiani su cui effettuare differenti tipologie di analisi. L'analisi comparata di misure altimetriche e dati lagrangiani condotta nel Mar Tirreno ha permesso di ridisegnare la circolazione del bacino e di dimostrare la presenza di ricolazioni semipermantenti e di strutture transienti che dominano la dinamica di questo mare. Inoltre è stata evidenziata l'importanza dell'uso congiunto di dati altimetrici e lagrangiani per l'identificazioni di strutture della circolazione di piccola scala. Nel Canale di Sicilia sono state invece analizzate lunghe serie temporali di clorofilla, di temperatura superficiale del mare e livello del mare utilizzando tecniche statistiche avanzate. Lo studio ha permesso identificare la variabilità spazio-temporale del fitoplancton e di comprendere l'impatto della circolazione marina sull’ecosistema costiero siciliano. Infine sull’intero sistema marino costiero Italiano è stata sviluppata una procedura per la definizione di trend di clorofilla da dati di Ocean Color. Diversi metodi per la stima del trend sono stati testati sia su serie temporali di dati OC che su serie temporali di misure in situ di clorofilla effettuate dalle Agenzie Regionali per la Protezione ambientale. Il confronto tra le stime ottenute ha permesso di individuare il metodo che meglio si adatta ai dati satellitari. Tale metodo è stato poi applicato per identificare le aree costiere Italiane soggette ad eutrofizzazione.
276

Analisi critica di modelli previsionali per le frane in Emilia Romagna / Analysis of forecasting models for landslides in Emilia Romagna

Franceschini, Silvia <1982> 11 May 2012 (has links)
Questa tesi di dottorato è inserita nell’ambito della convenzione tra ARPA_SIMC (che è l’Ente finanziatore), l’Agenzia Regionale di Protezione Civile ed il Dipartimento di Scienze della Terra e Geologico - Ambientali dell’Ateneo di Bologna. L’obiettivo principale è la determinazione di possibili soglie pluviometriche di innesco per i fenomeni franosi in Emilia Romagna che possano essere utilizzate come strumento di supporto previsionale in sala operativa di Protezione Civile. In un contesto geologico così complesso, un approccio empirico tradizionale non è sufficiente per discriminare in modo univoco tra eventi meteo innescanti e non, ed in generale la distribuzione dei dati appare troppo dispersa per poter tracciare una soglia statisticamente significativa. È stato quindi deciso di applicare il rigoroso approccio statistico Bayesiano, innovativo poiché calcola la probabilità di frana dato un certo evento di pioggia (P(A|B)) , considerando non solo le precipitazioni innescanti frane (quindi la probabilità condizionata di avere un certo evento di precipitazione data l’occorrenza di frana, P(B|A)), ma anche le precipitazioni non innescanti (quindi la probabilità a priori di un evento di pioggia, P(A)). L’approccio Bayesiano è stato applicato all’intervallo temporale compreso tra il 1939 ed il 2009. Le isolinee di probabilità ottenute minimizzano i falsi allarmi e sono facilmente implementabili in un sistema di allertamento regionale, ma possono presentare limiti previsionali per fenomeni non rappresentati nel dataset storico o che avvengono in condizioni anomale. Ne sono esempio le frane superficiali con evoluzione in debris flows, estremamente rare negli ultimi 70 anni, ma con frequenza recentemente in aumento. Si è cercato di affrontare questo problema testando la variabilità previsionale di alcuni modelli fisicamente basati appositamente sviluppati a questo scopo, tra cui X – SLIP (Montrasio et al., 1998), SHALSTAB (SHALlow STABility model, Montgomery & Dietrich, 1994), Iverson (2000), TRIGRS 1.0 (Baum et al., 2002), TRIGRS 2.0 (Baum et al., 2008). / This PhD thesis is inserted in the agreement between ARPA_SIMC (which is the sponsor), the Regional Civil Protection and the Department of Earth Sciences and Geo - Environmental of the University of Bologna. The main objective is the determination of possible rainfall thresholds for triggering landslides in Emilia Romagna, which can be used as an aid in forecasting operations of Civil Protection. In a such complex geological context, the distinction between critical and non-critical rainfall is not trivial: when different outputs (failure or no-failure) can be obtained for the same input (a given rainfall event) a deterministic approach is no longer applicable and a probabilistic model is needed. We use a Bayesian statistical approach, applied to a dataset ranging between 1939 and 2009, that is a direct application of conditional probabilities. The conditional probability is the probability of some event A (in our case a landslide) given the occurrence of some other event B (a rainfall episode with a certain magnitude, expressed in terms of total rainfall, intensity or any other variable). Conditional probability is written P(A|B) and it is read “the probability to have a landslide (A) given a rainfall episode (B)”. Probabilistic Bayesian thresholds minimize false alarms and can be easily implemented in a regional warning system, but their predictive capacity is limited about phenomena that are not represented in the historical dataset. This is the case of shallow landslides evolving in debris flows, extremely rare in the last 70 years, but, recently, their frequency is increasing. We tried to address this problem by testing the predictive capacity of some physically based models developed in literature, as X - SLIP (Montrasio et al., 1998), SHALSTAB (model Shallow Stability, Montgomery & Dietrich, 1994), Iverson (2000), TRIGRS 1.0 (Baum et al., 2002), TRIGRS 2.0 (Baum et al., 2008).
277

The AMS-02 Experiment and the Dark Matter Search

Masi, Nicolò <1985> 20 March 2013 (has links)
AMS-02 is running after great scientific goals since one year and a half: a final setting up for dark matter searches has been achieved, allowing to study the so important antiparticle to particle ratios, which will probably be the first dark matter signals ever corroborated. Even if primary cosmic rays fluxes are subjected to a lot of uncertainties sources, some statements can be done and have been written down about dark matter properties: DM should be a heavy Majorana fermion or Spin 0 or 1 boson, with a mass from about 1 TeV to 10 TeV - unveiling a new TeV-ish search age - which could be able to originate antiparticle fluxes enhancements at high energies, both for positrons and antiprotons. All the observations, direct and indirect, point to these new paradigms or can be traced back to them quite easily. These enhancements perfectly fall into the research window of AMS-02, allowing the experiment to attack each today credible theory. Also an investigation of the Sommerfeld effect-associated dark boson will be possible, in terms of antiparticle to particle ratios substructures. The first great AMS-02 measurement is the positron fraction: an official paper is going to be submitted in few months, where the correct behavior of the apparatus will be reviewed and the full positron fraction rate will be analyzed up to 200 GeV. In this concern, one of the objectives of this work is to test the AMS-02 capability and versatility in doing these dark matter researches, thanks to an orbital temporal (and geomagnetic) stability. The goal has been accomplished: the experiment is very stable in time, so that the temporal error associated to the positron fraction measurement is compatible with zero, offering a beyond belief opportunity to measure CR antiparticle to particle ratios.
278

Study of the forward photons productions in pp collisions at sqrt{s} = 7 TeV with the ZDC detector of the ATLAS experiment

Monzani, Simone <1981> 20 March 2013 (has links)
The Zero Degree Calorimeter (ZDC) of the ATLAS experiment at CERN is placed in the TAN of the LHC collider, covering the pseudorapidity region higher than 8.3. It is composed by 2 calorimeters, each one longitudinally segmented in 4 modules, located at 140 m from the IP exactly on the beam axis. The ZDC can detect neutral particles during pp collisions and it is a tool for diffractive physics. Here we present results on the forward photon energy distribution obtained using p-p collision data at sqrt{s} = 7 TeV. First the pi0 reconstruction will be used for the detector calibration with photons, then we will show results on the forward photon energy distribution in p-p collisions and the same distribution, but obtained using MC generators. Finally a comparison between data and MC will be shown.
279

Measurement of the ZZ production cross section and limits on anomalous neutral triple gauge couplings with ATLAS

Mengarelli, Alberto <1981> 20 March 2013 (has links)
The main work of this thesis concerns the measurement of the production cross section using LHC 2011 data collected at a center-of-mass energy equal to 7 TeV by the ATLAS detector and resulting in a total integrated luminosity of 4.6 inverse fb. The ZZ total cross section is finally compared with the NLO prediction calculated with modern Monte Carlo generators. In addition, the three differential distributions (∆φ(l,l), ZpT and M4l) are shown unfolded back to the underlying distributions using a Bayesian iterative algorithm. Finally, the transverse momentum of the leading Z is used to provide limits on anoumalus triple gauge couplings forbidden in the Standard Model.
280

Measurement of the differential cross section of tt pairs in pp collision at sqrt(s) = 7TeV with the ATLAS detector at the LHC

Romano, Marino <1985> 20 March 2013 (has links)
In this thesis three measurements of top-antitop differential cross section at an energy in the center of mass of 7 TeV will be shown, as a function of the transverse momentum, the mass and the rapidity of the top-antitop system. The analysis has been carried over a data sample of about 5/fb recorded with the ATLAS detector. The events have been selected with a cut based approach in the "one lepton plus jets" channel, where the lepton can be either an electron or a muon. The most relevant backgrounds (multi-jet QCD and W+jets) have been extracted using data driven methods; the others (Z+ jets, diboson and single top) have been simulated with Monte Carlo techniques. The final, background-subtracted, distributions have been corrected, using unfolding methods, for the detector and selection effects. At the end, the results have been compared with the theoretical predictions. The measurements are dominated by the systematic uncertainties and show no relevant deviation from the Standard Model predictions. / In questo lavoro verranno presentate tre misure di sezione d'urto differenziale di eventi top-antitop ad un'energia nel centro di massa pari a 7 TeV in funzione dell'impulso trasverso, della massa invariante e della rapidità del sistema. L'analisi è stata effettuata su un campione di dati pari a circa 5/fb raccolti dal rivelatore ATLAS durante il run del 2011 dell'LHC. Gli eventi sono stati selezionati con un approccio basato sui tagli nel canale "leptone più jet", dove il leptone può essere un elettrone o un muone. I principali fondi (QCD multi-jet e W+ jet) sono stati estratti con metodi "data driven", mentre i rimanenti (Z+ jet, WW/ZZ/WZ e top singolo) sono stati simulati con tecniche Monte Carlo. Le distribuzioni finali, dopo la sottrazione del background, sono state corrette, attraverso procedure di unfolding, dagli effetti del rivelatore e della selezione. In questo modo è possibile confrontare i risultati ottenuti con quelli di altri esperimenti. Le misure risultano dominate dalle incertezze sistematiche e non mostrano alcuna deviazione significativa dalle predizioni del Modello Standard.

Page generated in 0.0319 seconds