• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 24
  • 21
  • 15
  • 14
  • 3
  • 2
  • Tagged with
  • 171
  • 62
  • 46
  • 38
  • 33
  • 29
  • 27
  • 23
  • 22
  • 22
  • 20
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Combustion Synthesis of Nanomaterials Using Various Flame Configurations

Ismail, Mohamed 02 1900 (has links)
Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The modified CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases within these regions, with a slight increase in the axial velocity due to the precursor injection. This led to more uniformity in particle size distribution of the synthesized nanoparticles with the poppet valve (first modification). The double-slit modification improved the uniformity of generated nanoparticles at a very wide range of stable experimental conditions. Images of OH fluorescence showed that flames are tightly attached to the burner tip and TTIP has no influence on these flames structures. The particle size was slightly affected by the operating conditions. The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate and high temperature residence time of the precursor vapor. For ethylene and methane flames, the anatase content is proportional to the equivalence ratio, whereas it is inversely proportional in the case of propane flames. The anatase content reduced by 8% as we changed Re between 8,000 and 19,000, implying that the Re has a slight effect on the anatase content. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ >1.6) for C2H4, and at low equivalence ratios (φ <1.3) for the C3H8 flame. Concerning advanced nanoparticle synthesis, a multiple diffusion burner and flame spray pyrolysis (FSP) were adopted in this study to investigate the effect of doping/coating on TiO2 nanoparticles. The nanoparticles were characterized by the previously mentioned techniques in addition to thermogravimetric analysis (TGA) for carbon content, X-ray photoelectron spectroscopy (XPS) for surface chemistry, ultraviolet-visible spectroscopy (UV-vis) for light absorbance, inductively coupled plasma (ICP) for metal traces, and superconducting quantum interference device (SQUID) for magnetic properties. Results from multi diffusion burner show that doping TiO2 with vanadium changes the phase from anatase to rutile while doping and coating with carbon or SiO2 does not affect the phase. Doping with iron reduces the band gab of TiO2 particles by reducing the conduction band. FSP results show that iron doping changes the valance band of the nanoparticles and enhances their paramagnetic behavior as well as better light absorption than pure titania, which make these particles good candidates for photocatalytic applications.
102

Investigating Soot Morphology in Counterflow Flames at Elevated Pressures

Amin, Hafiz 01 1900 (has links)
Practical combustion devices such as gas turbines and diesel engines operate at high pressures to increase their efficiency. Pressure significantly increases the overall soot yield. Morphology of these ultra-fine particles determines their airborne lifetime and their interaction with the human respiratory system. Therefore, investigating soot morphology at high pressure is of practical relevance. In this work, a novel experimental setup has been designed and built to study the soot morphology at elevated pressures. The experimental setup consists of a pressure vessel, which can provide optical access from 10° to 165° for multi-angle light scattering, and a counterflow burner which produces laminar flames at elevated pressures. In the first part of the study, N2-diluted ethylene/air and ethane air counterflow flames are stabilized from 2 to 5 atm. Two-angle light scattering and extinction technique have been used to study the effects of pressure on soot parameters. Path averaged soot volume fraction is found to be very sensitive to pressure and increased significantly from 2 to 5 atm. Primary particle size and aggregate size also increased with pressure. Multi-angle light scattering is also performed and flames are investigated from 3 to 5 atm. Scattering to absorption ratio is calculated from multi-angle light scattering and extinction data. Scattering to absorption ratio increased with pressure whereas the number of primary particles in an aggregate decreased with increasing pressure. In the next part of the study, Thermophoretic Sampling of soot is performed, in counterflow flames from 3 to 10 atm, followed by transmission electron microscopy. Mean primary particle size increased with pressure and these trends are consistent withour light scattering measurements. Fractal properties of soot aggregates are found to be insensitive to pressure. 2D diffused light line of sight attenuation (LOSA) and Laser Induced Incandescence (LII) are used to measure local soot volume fraction from 2 to 10 atm. Local soot volume fraction increased with pressure and soot concentration profiles showed good agreements when measured by both techniques. Experimental data obtained in this work is very helpful for the modelers for validating their codes and predicting the soot formation in pressurized flames.
103

Combustion Noise and Instabilities from Confined Non-premixed Swirl Flames

Mohamed Jainulabdeen, Mohammed Abdul Kadher 21 October 2019 (has links)
No description available.
104

Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

Alquaity, Awad 01 November 2016 (has links)
With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control for increased efficiency and reduced emissions. Finally, a compact fast time-response time-of-flight mass spectrometer (TOFMS) was coupled to the shock tube through a pin-hole end-wall to enable timeresolved species concentration measurements. This diagnostic tool was demonstrated by investigating the decomposition of 1,3,5-trioxane over a wide range of shock conditions. Reaction rate coefficients were extracted by the best fit to the experimentally measured species time-histories. TOF-MS coupled to the shock tube is an ideal diagnostic tool for developing kinetic mechanisms for future fuels due to its ability to simultaneously measure several species during fuel pyrolysis/oxidation processes.
105

Numerical Studies of Wall Effects of Laminar Flames

Andrae, Johan January 2001 (has links)
Numerical simulations have been done with the CHEMKINsoftware to study different aspects of wall effects in thecombustion of lean, laminar and premixed flames in anaxisymmetric boundary-layer flow. The importance of the chemical wall effects compared to thethermal wall effects caused by the development of the thermaland velocity boundary layer has been investigated in thereaction zone by using different wall boundary conditions, walltemperatures and fuel/air ratios. Surface mechanisms include acatalytic surface (Platinum), a surface that promotesrecombination of active intermediates and a completely inertwall with no species and reactions as the simplest possibleboundary condition. When hydrogen is the model fuel, the analysis of the resultsshow that for atmospheric pressure and a wall temperature of600 K, the surface chemistry gives significant wall effects atthe richer combustion case (f=0.5), while the thermal andvelocity boundary layer gives rather small effects. For theleaner combustion case (f=0.1) the thermal and velocityboundary layer gives more significant wall effects, whilesurface chemistry gives less significant wall effects comparedto the other case. For methane as model fuel, the thermal and velocity boundarylayer gives significant wall effects at the lower walltemperature (600 K), while surface chemistry gives rather smalleffects. The wall can then be modelled as chemically inert forthe lean mixtures used (f=0.2 and 0.4). For the higher walltemperature (1200 K) the surface chemistry gives significantwall effects. For both model fuels, the catalytic wall unexpectedlyretards homogeneous combustion of the fuel more than the wallthat acts like a sink for active intermediates. This is due toproduct inhibition by catalytic combustion. For hydrogen thisoccurs at atmospheric pressure, but for methane only at thehigher wall temperature (1200 K) and the higher pressure (10atm). As expected, the overall wall effects (i.e. a lowerconversion) were more pronounced for the leaner fuel-air ratiosand at the lower wall temperatures. To estimate a possible discrepancy in flame position as aresult of neglecting the axial diffusion in the boundary layerassumption, calculations have been performed with PREMIX, alsoa part of the CHEMKIN software. With PREMIX, where axialdiffusion is considered, steady, laminar, one-dimensionalpremixed flames can be modelled. Results obtained with the sameinitial conditions as in the boundary layer calculations showthat for the richer mixtures at atmospheric pressure the axialdiffusion generally has a strong impact on the flame position,but in the other cases the axial diffusion may beneglected. Keywords:wall effects, laminar premixed flames,platinum surfaces, boundary layer flow / QC 20100504
106

Experimental and kinetic study of burning characteristics of natural gas blends

Khan, Farha 07 1900 (has links)
Following stringent mandates from environmental regulatory authorities worldwide, various steps are being implemented to ensure clean combustion with minimum emissions, including fuel dilution, mild combustion and additives. Due to the need to understand combustion characteristics in primary applications (engines and turbines) with minimum emissions, the laminar burning velocity of natural gas has been measured with CO2 dilution and a wide range of blends with higher hydrocarbons. And because it has improved anti-knock quality to reduce greenhouse gas emissions (GHGE), the demand for oxygenated gasoline is now worldwide, making a compelling case for determining combustion behavior of oxygenated gasoline doped with hydrogen, ozone and carbon monoxide. The first section of this dissertation discusses dilution of methane with CO2 at elevated pressures, providing insight into comparative laminar burning characteristics in a wide range of equivalence ratios, particularly significant at elevated initial pressure. Utilizing CHEMKIN, a detailed kinetic study has been performed that explains the varying dependence on dilution ratio controlled by initial pressure. The second phase of this work reports the laminar burning velocity measurement of commercial gasoline. A TPRFE surrogate was used here to investigate burning characteristics and to provide detailed kinetic analysis of gasoline doped with additives (hydrogen, carbon monoxide and ozone). A study was also made of the behavior of gasoline with these additives in practical applications like engine and turbines. For this purpose, laminar burning velocity was measured at elevated pressures and temperatures, by varying the concentrations of synthetic EGR, and followed by measuring turbulent burning velocity at two turbulent intensities.
107

An Experimental Investigation of the Relationship between Flow Turbulence and Temperature Fields in Turbulent Non-premixed Jet Flames

McManus, Thomas Andrew 02 October 2019 (has links)
No description available.
108

Chapman-Jouguet Deflagrations and Their Transition to Detonations

Rakotoarison, Willstrong 12 May 2023 (has links)
This thesis by articles addresses the role played by Chapman-Jouguet (CJ) deflagrations in deflagration to detonation transition (DDT) events. By definition, CJ deflagrations are flames propagating with a sonic flow in the burned gases, and are theoretically the fastest subsonic combustion waves able to propagate steadily, predicted using conservation of mass, momentum and energy. DDT is difficult to describe, as many complex phenomena and their interaction take place, including flame instabilities, turbulent combustion, and combustion in compressible medium, among others. Recent experiments and numerical simulations however showed that, prior to transition to detonations, deflagrations plateau at the CJ regime before rapid acceleration. In the present thesis, multiple aspects of the last stages of DDT are studied, and are each presented in published articles or articles in preparation. The two articles presented in Chapter 2 focus on experiments performed on the transition of a shock-flame complex to a detonation downstream of a single obstacle, in a stoichiometric propane-oxygen mixture at low pressure, mimicking the common configuration found at the last stages of DDT in experiments and numerical simulations performed in a channel filled with obstacles. The relative large size of the obstacle and the low gas initial pressure permitted to visualize the details of the initiation of the detonation around the obstacle. Transition to detonation was found to occur in a similar fashion for variously shaped obstacles, after flame acceleration due to the interaction with reflected shocks. This acceleration process was found to occur rapidly in the case where the incident flame propagated with a burning rate close to the Chapman-Jouguet value. The third article presented in Chapter 3 describes a model aimed to predict the properties of shocks followed by a CJ deflagration, in experimental configurations where the burned gases can be vented. The formulation is similar to the double discontinuity problem adapted from the work of Chue (1993), extended to cases where the burned gases are not confined by a rear wall anymore, but can be vented through an opening of known dimensions. The properties of the shock / CJ-deflagration complex could then be predicted and compared to flame measurements done prior the initiation of detonations, obtained on a selection of large scale DDT experiments. The good agreement suggests that DDT occurs when deflagrations reach the CJ regime, corroborating with observations done in shock tubes. The article presented in Chapter 4 is aimed to present a consistent method for calculating the structure of flames propagating at arbitrary burning velocities, from the low-Mach case (isobaric) up to the CJ deflagration regime. The method uses a dynamical system approach to calculate the steady wave structure, described by ordinary differential equations. A stability analysis near the burned and unburned gases permitted to develop a numerical shooting technique, which was used to obtain the flame structure and burning rate eigenvalue. Chapter 5 is a numerical study of the deflagration to detonation transition problem in one-dimension. By linearly increasing the burning rate eigenvalue to increase the flame burning velocity, the flame first reached the CJ condition. Subsequent increase in the burning rate leads to the self-organization of the flame into a CJ deflagration - shock complex. This self-organization triggers a pulsating gasdynamic instability leading to the transition of the flame to detonation.
109

Computational Tools for Modeling and Simulation of Sooting Turbulent Non-Premixed Flames

Stephens, Victoria B. 14 December 2022 (has links)
Turbulent combustion systems are physically complex processes that involve many interdependent phenomena---including turbulent fluid dynamics, multi-component mass transfer, convective and radiative heat transfer, and multiphase flow---that occur over a wide range of length and time scales. Modeling and simulation studies complement experimental work by implementing and validating models and providing predictive capabilities, but current software tools are often limited by a lack of standardization and best practices, non-robust implementation, or over-specialization. Some topics in combustion CFD research, notably radiative heat transfer and soot modeling, are critically underrepresented in simulation studies as a result of software limitations. This project establishes and develops three computational tools designed for use in combustion CFD: the ODT code implements the one-dimensional turbulence (ODT) model in its most reliable form, increasing its potential for application to turbulent flow problems of interest to engineers; RadLib is a standalone library of validated radiative property models intended for application to combustion systems; and SootLib is a library of validated models for soot chemistry and particle size distribution treatments, including four moment methods and one sectional model. All three tools are open-source, cross-platform model implementations that incorporate aspects of modern software design intended to make them flexible, consistent, and easy to use and expand upon. The tools developed in this project provide researchers with convenient access to modeling tools for complex phenomena that might otherwise require significant investments of time and resources to implement individually. They also provide established frameworks on which new models can be developed and communicated, offering unparalleled potential for comparative and parametric studies of combustion processes.
110

Chemiluminescence and High Speed Imaging of Reacting Film Cooling Layers

O'Neil, Alanna R. January 2011 (has links)
No description available.

Page generated in 0.0184 seconds