• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 24
  • 21
  • 15
  • 14
  • 3
  • 2
  • Tagged with
  • 171
  • 62
  • 46
  • 38
  • 33
  • 29
  • 27
  • 23
  • 22
  • 22
  • 20
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of novel diagnostic techniques to measure heat release rate perturbations in flames

Li, Jingxuan 30 January 2012 (has links) (PDF)
Heat release rate disturbances are the sources of additional thermal stresses, direct and indirect combustion noise and undesirable vibrations. In extreme cases, these perturbations may even cause destructive combustion instabilities. These quantities are difficult to measure in practical burners. The objective of this work is to develop two alternative diagnostics to measure heat release rate fluctuations in unsteady flames. These techniques are validated in generic configurations for perfectly premixed laminar flames. The first method is an acoustic technique, which is based on the measurement of the travel time of ultrasonic waves through the flames. Fluctuations of the sound propagation time transmission through unsteady flames are used to estimate perturbations in the burned gases width along the acoustic path. This information is then used to reconstruct heat release rate fluctuations. This technique is validated in the cases of unstable laminar premixed flames driven by buoyancy forces and for flames submitted to harmonic flow velocity modulations. Analytical expressions are derived linking fluctuations in heat release rate and disturbances of the sound travel time. Measurements made with this acoustic technique are compared with optical detections based on the flame chemiluminescence and with predictions from an analytical model. Good agreements are obtained between these different methods validating the proposed technique. The second method envisaged is an optical technique based on a Laser Interferometric Vibrometer used to measure integrated density perturbations along the optical path of a laser beam. It is shown that density disturbances along this path result mainly from heat release rate fluctuations when the flames are confined. A link is established to reconstruct heat release rate disturbances from the signal of the interferometer. The technique is validated in the case of pulsated laminar premixed flames. Measurements are compared to line-of-sight integrated chemiluminescence emission measurements. A good agreement is obtained for harmonic flow modulations at different forcing frequencies and perturbation levels for flames operating at different flow conditions. This work validates the principle of this alternative technique for detecting heat release rate perturbations.
82

Numerical Modelling of Sooting Laminar Diffusion Flames at Elevated Pressures and Microgravity

Charest, Marc Robert Joseph 31 August 2011 (has links)
Fully understanding soot formation in flames is critical to the development of practical combustion devices, which typically operate at high pressures, and fire suppression systems in space. Flames display significant changes under microgravity and high-pressure conditions as compared to normal-gravity flames at atmospheric pressure, but the exact causes of these changes are not well-characterized. As such, the effects of gravity and pressure on the stability characteristics and sooting behavior of laminar coflow diffusion flames were investigated. To study these effects, a new highly-scalable combustion modelling tool was developed specifically for use on large multi-processor computer architectures. The tool is capable of capturing complex processes such as detailed chemistry, molecular transport, radiation, and soot formation/destruction in laminar diffusion flames. The proposed algorithm represents the current state of the art in combustion modelling, making use of a second-order accurate finite-volume scheme and a parallel adaptive mesh refinement algorithm on body-fitted, multi-block meshes. An acetylene-based, semi-empirical model was used to predict the nucleation, growth, and oxidation of soot particles. Reasonable agreement with experimental measurements for different fuels and pressures was obtained for predictions of flame height, temperature and soot volume fraction. Overall, the algorithm displayed excellent strong scaling performance by achieving a parallel efficiency of 70% on 384 processors. The effects of pressure and gravity were studied for flames of two different fuels: ethylene-air flames between pressures of 0.5–5 atm and methane-air flames between 1–60 atm. Based on the numerical predictions, zero-gravity flames had lower temperatures, broader soot-containing zones, and higher soot concentrations than normal-gravity flames at the same pressure. Buoyant forces caused the normal-gravity flames to narrow with increasing pressure while the increased soot concentrations and radiation at high pressures lengthened the zero-gravity flames. Low-pressure flames at both gravity levels exhibited a similar power-law dependence of the maximum carbon conversion on pressure which weakened as pressure was increased. This dependence decayed at a faster rate in zero gravity when pressure was increased beyond 1–10 atm.
83

Numerical Simulation Of Laminar Reacting Flows

Tarhan, Tanil 01 September 2004 (has links) (PDF)
Novel sequential and parallel computational fluid dynamic (CFD) codes based on method of lines (MOL) approach were developed for the numerical simulation of multi-component reacting flows using detailed transport and thermodynamic models. Both codes were applied to the prediction of a confined axisymmetric laminar co-flowing methane-air diffusion flame for which experimental data were available in the literature. Flame-sheet model for infinite-rate chemistry and one-, two-, and five- and ten-step reduced finite-rate reaction mechanisms were employed for methane-air combustion sub-model. A second-order high-resolution total variation diminishing (TVD) scheme based on Lagrange interpolation polynomial was proposed in order to alleviate spurious oscillations encountered in time evolution of flame propagation. Steady-state velocity, temperature and species profiles obtained by using infinite- and finite-rate chemistry models were validated against experimental data and other numerical solutions. They were found to be in reasonably good agreement with measurements and numerical results. The proposed difference scheme produced accurate results without spurious oscillations and numerical diffusion encountered in the classical schemes and hence was found to be a successful scheme applicable to strongly convective flow problems with non-uniform grid resolution. The code was also found to be an efficient tool for the prediction and understanding of transient combustion systems. This study constitutes the initial steps in the development of an efficient numerical scheme for direct numerical simulation (DNS) of unsteady, turbulent, multi-dimensional combustion with complex chemistry.
84

Lean blowoff characteristics of swirling H2/CO/CH4 Flames

Zhang, Qingguo 05 March 2008 (has links)
This thesis describes an experimental investigation of lean blowoff for H2/CO/CH4 mixtures in a swirling combustor. This investigation consisted of three thrusts. The first thrust focused on correlations of the lean blowoff limits of H2/CO/CH4 mixtures under different test conditions. It was found that a classical Damköhler number approach with a diffusion correction could correlate blowoff sensitivities to fuel composition over a range of conditions. The second part of this thesis describes the qualitative flame dynamics near blowoff by systematically characterizing the blowoff phenomenology as a function of hydrogen level in the fuel. These near blowoff dynamics are very complex, and are influenced by both fluid mechanics and chemical kinetics; in particular, the role of thermal expansion across the flame and extinction strain rate were suggested to be critical in describing these influences. The third part of this thesis quantitatively analyzed strain characteristics in the vicinity of the attachment point of stable and near blowoff flames. Surprisingly, it was found that in this shear layer stabilized flame, flow deceleration is the key contributor to flame strain, with flow shear playing a relatively negligible role. Near the premixer exit, due to strong flow deceleration, the flame is negatively strained i.e., compressed. Moving downstream, the strain rate increases towards zero and then becomes positive, where flames are stretched. As the flame moves toward blowoff, holes begin to form in the flame sheet, with a progressively higher probability of occurrence as one moves downstream. It is suggested that new holes form with a more uniform probability, but that this behavior reflects the convection of flame holes downstream by the flow. It has been shown in prior studies, and affirmed in this work, that flames approach blowoff by first passing through a transient phase manifested by local extinction events and the appearance of holes on the flame. A key conclusion of this work is that the onset of this boundary occurs at a nearly constant extinction strain rate. As such, it is suggested that Damköhler number scalings do not describe blowoff itself, but rather the occurrence of this first stage of blowoff. Given the correspondence between this first stage and the actual blowoff event, this explains the success of classical Damköhler number scalings in describing blowoff, such as shown in the first thrust of this thesis. The physics process associated with the actual blowoff event is still unclear and remains a key task for future work.
85

Application de la diffusion Rayleigh induite par laser à la caractérisation des fronts de flamme laminaire de prémélange H2/CH4/Air et H2/CO/Air / Application of laser induced Rayleigh scattering to the characterization of H2/CH4/Air and H2/CO/Air premixed laminar flame fronts

Ponty, Ludovic 14 June 2011 (has links)
Ce travail de Thèse est consacré à la caractérisation de la structure thermique des fronts de flammelaminaire de prémélange H2/CH4/Air et H2/CO/Air pauvres. L’étude a été réalisée sur un brûleur à jets opposés, permettant de stabiliser des flammes planes stationnaires, dans des conditions quasi-adiabatiques, pour différentes conditions d’étirement. Un diagnostic de Vélocimétrie par Imagerie de Particule (PIV) et un diagnostic bidimensionnel de diffusion Rayleigh induite par laser ont été utilisés successivement pour étudier l’influence de la richesse, de la concentration en hydrogène dans le combustible et de l’étirement sur le profil de température normal au front de flamme. Trois grandeurs fondamentales ont été étudiées : la température des gaz brûlés, le gradient maximum de température et l’épaisseur de flamme au sens de Spalding. Une attention particulière a été portée à l’interprétation du signal Rayleigh. Ce dernier dépendant notamment de la composition du gaz qui évolue à travers le front de flamme. Dans ce travaille de thèse, cette évolution a été évaluée numériquement (simulations 1D : CANTERA et OPPDIF) puis prise en compte pour améliorer le traitement des données expérimentales. Les résultats expérimentaux couvrent une gamme de richesses s’étalant pour H2/CH4/Air et H2/CO/Air, respectivement de 0.6 à 0.8 et de 0.4 à 0.6. Les concentrations en hydrogène dans le combustible s’étalent respectivement de 0 à 50% et de 10 à 50%. Une comparaison systématique a été faite avec les résultats de simulation numérique 1D (OPPDIF). / This Thesis is devoted to the characterization of the thermal structure of H2/CH4/Air and H2/CO/Air laminar flames. Counterflow flame setup has been used to study planar flames in steady and near-adiabatic conditions. Particle Image Velocimetry and laser induced Rayleigh scattering diagnostics has been successively applied to characterize the influence of equivalent ratio, hydrogen concentration in fuel and stretch on the temperature profile normal to the flame front. Three fundamental characteristics have been studied: the burned gas temperature, the maximum temperature gradient and the flame thickness defined by Spalding. Particular attention has been brought to the interpretation of the Rayleigh signal. Indeed, Rayleigh scattering depends on the gas composition which evolves across the flame front. This evolution has been numerical evaluated in this work (1D simulation: CANTERA and OPPDIF) and taken into account to improve Rayleigh data processing. Experimental results have been obtained for lean flames: equivalent ratio spreads from 0.6 to 0.8 and from 0.4 to 0.6 respectively for H2/CH4/Air and H2/CO/Air flames. A wide range of hydrogen concentration has been studied: from 0 to 50% of hydrogen in fuel for H2/CH4/Air flames and from 10 to 50% of hydrogen in fuel for H2/CO/Air flames. Experimental and numerical (OPPDIF) results have been systematically confronted.
86

Desenvolvimento de soluções analítico/numéricas para chamas difusivas turbulentas de hidrogênio

Pereira, Felipe Norte January 2012 (has links)
Os processos de conversão de energia tendem a considerar cada vez mais restrições econômicas e ambientais, tornando-se necessário o entendimento da interação entre combustão e turbulência. Este trabalho tem como objetivo o desenvolvimento de soluções analíticas para a fração de mistura de uma chama difusiva, sob forma de um jato turbulento axissimétrico. Foi desenvolvida, também, uma metodologia analíticonumérica para a determinação das frações mássicas dos componentes, considerando uma reação de combustão de dois passos. Os resultados foram comparados com dados experimentais encontrados na literatura para uma chama de hidrogênio H2=N2 (50/50% em volume). De modo geral, os resultados obtidos foram satisfatórios frente aos dados experimentais, sendo a principal limitação o fato das expressões analíticas obtidas não serem capazes de representar o jato próximo à saída do bocal, sendo válidas a partir de, aproximadamente, x=d > 10, onde x é a coordenada ao longo do comprimento do jato. A principal vantagem do método empregado neste trabalho é a diminuição da complexidade do sistema de equações a ser resolvido numericamente. / The energy conversion processes tend to consider even more economical and environmental constraints, making it necessary to understand the interaction between combustion and turbulence. This study aims at the development of analytical solutions for the mixture fraction of a diffusive flame in the form of an axisymmetric turbulent jet. It was also considered an analytical-numerical approach for the determination of the mass fractions of the compounds, for a two-step reaction. The results were compared with data found in literature for a hydrogen flame H2=N2 (50/50 % by volume). Overall, the results were satisfactory when compared with the experimental data, however the principal limitation was the fact that the analytical expressions were not able to represent the jet near the nozzle exit, being the solution valid from, approximately, x=d > 10, where x is the coordinate along the jet length. The main advantage of the method employed in this work is the decrease in the complexity of the equations system to be solved numerically.
87

Solução via LES de chamas difusivas de metano, metanol e etanol

Andreis, Greice da Silva Lorenzzetti January 2011 (has links)
Neste trabalho apresenta-se a modelagem de chamas difusivas na forma de jato, para baixo número de Mach e elevado número de Damköhler. O modelo é baseado na solução das equações na forma flamelet para a parte química e na fração de mistura para o fluxo. Este modelo descreve bem o comportamento de chamas difusivas, exceto na sua extremidade (ponta), onde geralmente surgem instabilidades. Resultados numéricos são apresentados para uma cinética química de uma e multietapas, utilizando a técnica LES (Large-Eddy Simulation) com o modelo de Smagorinsky para a viscosidade turbulenta. A discretização das equações governantes é feita em diferenças finitas, com a aplicação da técnica TVD (Total Variation Diminishing). Além disso, apresentamse mecanismos reduzidos multietapas para o metano, o metanol e o etanol, visando obter resultados realistas. A modelagem de chamas de metanol e etanol diferencia-se da modelagem de chamas de metano por ocorrer uma mudança de fase antes da combustão. Modela-se o efeito global das gotas usando uma descrição Lagrangeana que é incorporada à descrição Euleriana do escoamento, via termos fonte. Testes numéricos foram realizados para chamas difusivas de metano, metanol e etanol, e os resultados estão em concordância com os dados encontrados na literatura. / This work presents a model for a jet diffusion flame, for low Mach and high Damköhler numbers. The model is based on the solution of the flamelet equations for the chemistry and on the mixture fraction for the flow. This model describes well the behavior of diffusion flames, except at the flame tip, where instabilities can often occur. Numerical results are presented for an one-step and multi-step chemical kinetic models, using the LES (Large-Eddy Simulation) technique with the Smagorinsky model for the turbulent viscosity. The discretization of the governing equations follows the finite difference method, with the application of the TVD (Total Variation Diminishing) technique. Besides, multi-step reduced mechanisms for the methane, the methanol and the ethanol are employed, obtaining realistic results. The flame modeling of methanol and ethanol differs from the modeling of methane flames because of a phase change occurs before the combustion. The droplets global effect is modeled based on a Lagrangian description, which is incorporated into the Eulerian description of the flow through source terms. Numerical tests were carried out for methane, methanol and ethanol diffusion flames, and the results compare well with data in the literature.
88

Simulation des Grandes Echelles de flammes de spray et modélisation de la combustion non-prémélangée / Large Eddy Simulation of spray flames and modelling of non-premixed combustion

Shum-Kivan, Francis 15 June 2017 (has links)
La combustion d’hydrocarbures représente encore aujourd’hui une part très majoritaire de la production d’énergie dans le monde, et en particulier dans l’industrie aéronautique. La plupart des brûleurs industriels sont alimentés par un carburant sous forme liquide, injecté directement dans la chambre de combustion, générant ainsi de fortes interactions entre le spray, l’écoulement turbulent et la flamme. Dans le but d’acquérir une meilleure compréhension de la structure complexe des flammes de spray, une étude numérique a été réalisée sur la configuration du brûleur diphasique KIAI, caractérisée de façon précise et complète expérimentalement. Une approche de type simulation des grandes échelles a été utilisée pour simuler la phase gazeuse tandis que la phase liquide était résolue selon un formalisme Lagrangien déterministe (LES-DPS). L’analyse détaillée de la structure de flamme de spray permet de mettre en exergue le rôle important de la combustion non prémélangée dans ce type de flamme. Cela a motivé dans une seconde étape le développement d’une nouvelle approche pour modéliser les flammes de diffusion turbulentes. Le modèle présenté s’appuie sur la réponse des flammes de diffusion laminaires au maillage, à l’étirement et au plissement. Le dégagement de chaleur global de la flamme a été analysé dans des configurations de complexité croissante, et la capacité du modèle à le décrire a été évaluée. / The combustion of hydrocarbons still represents a major part of the worldwide production of energy, especially in the aeronautical industry. Most industrial burners are fed with liquid fuel that is directly injected in the combustion chamber, generating a strong interaction between the spray, the turbulent flow and the flame. In order to provide a better understanding of turbulent spray flame complex structures, a numerical study has been performed on the two-phase flow burner KIAI which has been experimentally fully characterized. Numerical simulations consist of Large Eddy Simulation coupled to Discrete Particle Simulation for the dispersed phase (LES-DPS). A detailed analysis of the flame structure shows that non-premixed combustion plays an important role in this type of spray flame. This motivates, in a second step of the present work, the development of a new approach to model turbulent diffusion flames. The model is based on the response to the mesh, strain rate and wrinkling. The global flame heat release is analyzed through configurations of increasing complexity and the capacity of the model to describe it is evaluated.
89

Solução analítico-numérica para chamas difusivas turbulentas de etanol com formação de NOx

Pereira, Felipe Norte January 2016 (has links)
Os processos de conversão de energia tendem a considerar cada vez mais restrições econômicas e ambientais, tornando-se necessário o entendimento da interação entre combustão e turbulência. Esta tese tem como objetivo o desenvolvimento de soluções numéricas para chamas difusivas de metanol e etanol, sob forma de um jato turbulento considerando a formação de NO. Como resultado, obteve-se um mecanismo reduzido de 16 passos para combustão de metanol e outro de 21 passos para etanol, mediante aplicação de análise de sensibilidade para o mecanismo detalhado de Marinov (1999). Estes mecanismos reduzidos foram empregados na simulação, e os resultados foram satisfatórios quando comparados com valores encontrados na literatura. Para determinação da geração de NO na chama, empregou-se o mecanismo de Zel’dovich. Devido a cinética de formação de NO por este mecanismo ser consideravelmente mais lenta do que a taxa de oxidação do combustível principal, foi possível tratar os dois mecanismos separadamente. Os resultados obtidos para formação de NO comparam favoravelmente com dados da literatura. / The energy conversion processes increasingly tend to consider the economical and environmental constraints, making it necessary to understand the interaction between combustion and turbulence. This thesis aims the development of numerical solutions for diffusion flames of methanol and ethanol in the form of a turbulent jet, considering the formation of NO. As a result, a reduced mechanism of 16 steps for methanol combustion and another of 21 steps for etanol combustion was obtained by applying a sensitivity analysis to the detailed mechanism of Marinov (1999). These reduced mechanisms were used in the simulation, and the results were satisfactory when compared with data found in the literature. In order to determine the NO generation in the flame, the Zel’dovich mechanism was applied. Because the NO kinetics formation by this mechanism is considerably slower than the oxidation rate of the main fuel, it was possible to treat the two mechanisms separately. The results obtained for NO formation compare favorably with literature data.
90

Solução analítico-numérica para chamas difusivas turbulentas de etanol com formação de NOx

Pereira, Felipe Norte January 2016 (has links)
Os processos de conversão de energia tendem a considerar cada vez mais restrições econômicas e ambientais, tornando-se necessário o entendimento da interação entre combustão e turbulência. Esta tese tem como objetivo o desenvolvimento de soluções numéricas para chamas difusivas de metanol e etanol, sob forma de um jato turbulento considerando a formação de NO. Como resultado, obteve-se um mecanismo reduzido de 16 passos para combustão de metanol e outro de 21 passos para etanol, mediante aplicação de análise de sensibilidade para o mecanismo detalhado de Marinov (1999). Estes mecanismos reduzidos foram empregados na simulação, e os resultados foram satisfatórios quando comparados com valores encontrados na literatura. Para determinação da geração de NO na chama, empregou-se o mecanismo de Zel’dovich. Devido a cinética de formação de NO por este mecanismo ser consideravelmente mais lenta do que a taxa de oxidação do combustível principal, foi possível tratar os dois mecanismos separadamente. Os resultados obtidos para formação de NO comparam favoravelmente com dados da literatura. / The energy conversion processes increasingly tend to consider the economical and environmental constraints, making it necessary to understand the interaction between combustion and turbulence. This thesis aims the development of numerical solutions for diffusion flames of methanol and ethanol in the form of a turbulent jet, considering the formation of NO. As a result, a reduced mechanism of 16 steps for methanol combustion and another of 21 steps for etanol combustion was obtained by applying a sensitivity analysis to the detailed mechanism of Marinov (1999). These reduced mechanisms were used in the simulation, and the results were satisfactory when compared with data found in the literature. In order to determine the NO generation in the flame, the Zel’dovich mechanism was applied. Because the NO kinetics formation by this mechanism is considerably slower than the oxidation rate of the main fuel, it was possible to treat the two mechanisms separately. The results obtained for NO formation compare favorably with literature data.

Page generated in 0.0217 seconds