• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 9
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Autophagie, une cible thérapeutique potentielle dans les leucémies aiguës myéloïdes exprimant FLT3-ITD / Autophagy, a potential therapeutic target in acute myeloid leukaemias expressing FLT3-ITD

Heydt, Quentin 21 September 2017 (has links)
Les leucémies aiguës myéloïdes (LAM) sont des hémopathies malignes caractérisées par une accumulation dans la moelle et le sang de progéniteurs hématopoïétiques bloqués dans un stade différenciation. La mutation FLT3-ITD, qui entraîne une activation constitutive du récepteur à activité tyrosine kinase FLT3, est retrouvée dans 20-25% des LAM et est associée à un mauvais pronostique. De nombreux inhibiteurs de FLT3 ont été développés et certains sont testés en clinique mais des études mettent en évidence l'apparition de résistance. Une meilleure compréhension des mécanismes oncogéniques de FLT3-ITD est donc nécessaire afin d'améliorer le traitement des LAM. Mes travaux de thèse ont été centrés sur l'analyse du processus autophagique qui correspond à l'un des mécanismes de résistance décrits dans les cellules cancéreuses en réponse aux traitements. Au cours de cette étude, nous avons constaté que l'expression de FLT3-ITD augmente l'autophagie basale des cellules de LAM, et que l'inhibition du récepteur réduit cette autophagie dans des échantillons primaires de LAM et dans des lignées cellulaires. Nous avons pu montrer que l'autophagie est requise pour la prolifération et la survie in vitro et in vivo des cellules de LAM et que sont ciblage permet de surmonté la résistance aux inhibiteurs de FLT3. De plus, nous avons identifié la protéine ATF4 comme un acteur essentiel au processus d'autophagie en aval de FLT3-ITD. Ces résultats suggèrent que le ciblage de l'autophagie ou d'ATF4 chez les patients exprimant les mutations de FLT3 peut représenter une stratégie thérapeutique prometteuse et innovatrice dans les LAM. / Acute myeloid leukemias (AMLs) are a family of hematological malignancies characterized by an accumulation in the marrow and blood of hematopoietic progenitors blocked in their differentiation process. The FLT3-ITD mutation is found in 20-25% of AMLs and is associated with a poor prognosis. Different FLT3 inhibitors have been developed and some of them are clinically tested but resistance to treatment has been observed in many patients. A better understanding of AML biology is necessary in order to improve the treatment of AMLs. My thesis project focused on the analysis of the autophagic process, which is one of the mechanisms described in the resistance of cancer cells. In this study, we found that the FLT3-ITD expression increases basal autophagy in AML cells, and that the receptor inhibition reduced this autophagy in primary patient samples and cell lines. We show that autophagy is required for proliferation and survival in vitro and in vivo of leukemic cells lines and inhibition of autophagy overcomes resistance to FLT3 inhibitors. In addition, we identified the ATF4 protein as a key actor of the autophagy process induced by the FLT3-ITD mutation. These results suggest that targeting autophagy or ATF4 may represent a promising and innovative therapeutic strategy for FLT3 mutated AMLs.
12

The protein tyrosine phosphate, SHP2, functions in multiple cellular compartments in FLT3-ITD+ Leukemia

Richine, Briana Marie 09 March 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / FMS-like tyrosine receptor kinase-internal tandem duplications (FLT3-ITDs) are the most frequent deleterious mutations found in acute myeloid leukemia (AML) and portend a poor prognosis. Currently, AML patients typically achieve disease remission, yet undergo high rates of disease relapse, implying a residual post-treatment reservoir of resistant malignancy-initiating cells. This begs for new therapeutic approaches to be discovered, and suggests that targeting multiple cellular compartments is needed for improved therapeutic approaches. We have shown that the protein tyrosine phosphatase, Shp2, associates physically FLT3-ITD at tyrosine 599 (Y599) and positively regulates aberrant STAT5 activation and leukemogenesis. We also demonstrated that genetic disruption of Ptpn11, the gene encoding Shp2, increased malignancy specific survival of animals transplanted with FLT3-ITD-transduced cells, suggesting that Shp2 may regulate the function of the malignancy-initiating cell. Taken together, I hypothesized that inhibiting Shp2 can target both FLT3-ITD+ AML tumor cells as well as FLT3-ITD-expressing hematopoietic stem cells. To study this hypothesis, I employed two validation models including genetic inhibition of Shp2 interaction with FLT3-ITD in 32D cells or genetic disruption of Shp2 in FLT3-ITD-expressing HSCs. Using FLT3-ITD-expressing 32D cells as an AML tumor model, I found that mutating the Shp2 binding site on FLT3-ITD (Y599) reduced proliferation in vitro and increased latency to leukemia onset in vivo. Further, pharmacologic inhibition of Shp2 preferentially reduced proliferation of FLT3-ITD+ primary AML samples compared to FLT3-ITD- samples, and cooperated with inhibition of the lipid kinase, phospho-inositol-3-kinase (PI3K), and of the tyrosine kinase, Syk, to reduce proliferation of both FLT3-ITD+ and FLT3-ITD- AML samples. To evaluate the stem cell compartment, I crossed a murine locus-specific knock-in of FLT3-ITD with Shp2flox/flox; Mx1-Cre mice to generate FLT3-ITD; Shp2+/- mice and found that Shp2 heterozygosity dramatically inhibits hematopoietic stem cell engraftment in competitive transplant assays. Further, I found that lineage negative cells from FLT3-ITD; Shp2+/- mice demonstrated increased senescence compared to control mice, suggesting that Shp2 may regulate senescence in FLT3-ITD-expressing hematopoietic stem cells. Together, these findings indicate a cooperative relationship between the tyrosine phosphatase, Shp2, and the kinases PI3K and Syk in AML tumor cells, and indicate that Shp2 plays a positive role in the stem cell compartment to promote stem cell function of the malignancy-initiating cell in AML. Therefore, targeting Shp2 may hold therapeutic benefit for patients with FLT3-ITD+ AML.
13

Etude du rôle de la traduction dans les leucémies aigues myéloïdes : les voies mTORC1, LKB1/AMPK et la sérine-thréonine kinase PIM-2 / Pas de titre traduit

Green, Alexa Samantha 11 July 2013 (has links)
Les leucémies aigues myéloïdes (LAM) sont des hémopathies malignes de mauvais pronostic dont les thérapies actuelles ne permettent d’obtenir des taux de survie à 5 ans chez les adultes que d’environ 40%. Par conséquent, il est nécessaire d’approfondir nos connaissances concernant les mécanismes d’oncogenèse pour développer de nouvelles approches thérapeutiques. Malgré leur hétérogénéité clinique et biologique, les LAM ont certaines caractéristiques communes comme l’activation de la voie de signalisation mTORCl qui est détectée dans la plupart des échantillons de LAM. MTORCl contrôle la survie, la croissance et la prolifération cellulaire, notamment via le contrôle de la traduction des ARNm et donc de la synthèse protéique. Au cours de ce travail, nous montrons qu’il existe, dans les LAM, une dérégulation de mTORCl qui explique les limites des effets anti-leucémiques observés avec la rapamycine (un inhibiteur allostérique de mTORCl) et qui est médiée en partie par l’activité de la sérine thréonine kinase Pim2, qui contrôle la phosphorylation de la cible de mTORCl, la protéine 4E-BP1. Cependant, cibler directement la traduction produit des effets anti-leucémiques importants, ce que nous avons montré en utilisant une molécule inhibant spécifiquement le complexe d’initiation de la traduction, le 4EGI-l. EIF4E est essentiel à l’initiation de la traduction et nous avons montré sa surexpression au niveau protéique dans la plupart des échantillons de LAM au diagnostic par comparaison à des cellules hématopoïétiques normales CD34+. Bien que son niveau d’expression n’ait pas de valeur pronostique intrinsèque, ce résultat suggère un potentiel important au blocage de la traduction dans la plupart des cas de LAM. Dans la perspective d’inhiber mTORCl, nous avons activé la voie LKBl/AMPK par la metformine, ce qui a induit des effets anti-leucémiques in vitro et in vivo via une modification du métabolisme cellulaire avec en particulier une inhibition de la synthèse de protéines oncogéniques. La metformine n’étant pas un candidat en thérapeutique dans les LAM du fait d’un index thérapeutique trop étroit, de nouvelles molécules modulant la voie LKBl/AMPK sont en cours de développement. Enfin, nous avons étudié le rôle de la sérine thréonine kinase Pim2, qui contrôle la traduction protéique et la survie dans les cellules de LAM Flt3-ITD+. Nous avons de plus montré que la sur-expression de Pim2 constitue un nouveau mécanisme de résistance aux inhibiteurs de Flt3 et représente donc une cible thérapeutique prometteuse dans cette catégorie de LAM. L’étude de la voie mTORCl et de la traduction permet donc d’envisager de multiples perspectives thérapeutiques dans les LAM dont certaines sont déjà en cours de développement clinique. / Acute myeloid leukemia (AML) are hematological malignancies with adverse prognosis in which therapies only gives 40% survival within 5 years in adults. Hence, it is important to increase our knowledge regarding oncogenesis to further develop new therapeutic approaches. Despite their clinical and biological heterogeneity, AML have in common the constitutive activation of mTORC1 signaling which is detected in most AML samples. MTORC1 controls cell survival, growth and proliferation, in particular through control of mRNA translation and protein synthesis. During this work, we show, in AML, that mTORC1 is deregulated which explain the poor effects observed with rapamycin (a mTORC1 allosteric inhibitor) and is partially mediated by the serine/threonine kinase Pim-2 which controls the mTORC1 target 4E-BP1. Nevertheless, directly targeting translation, using a specific translation initiation inhibitor named 4EGI-1, have important anti leukemic effects. EIF4E is described as essential in translation initiation and we show its protein overexpression in most AML samples at diagnosis compared with normal hematopoietic CD34+ cells. Whereas eIF4E level expression has no prognostic impact, this result suggests an important potential for treatment targeting translation initiation in AML. In our purpose of inhibiting mTORC1, we were able to activate LKB1/AMPK signaling pathway with metformin, which induces anti leukemic effects in vitro and in vivo through in particular oncogenic protein translation inhibition. Metformin is not a good AML therapeutic candidate because of a narrow therapeutic index, new compound targeting LKB1/AMPK are in development. Finally, we studied the role of the serine/threonine kinase Pim-2 and show that it controls protein translation and FLT3-ITD+ AML cells survival. Furthermore, we show that Pim-2 overexpression is a new mechanism of Flt3 inhibitors resistance and represent a new promising therapeutic target in this AML subtype. Overall, mTORC1 and protein translation study in AML show multiple therapeutics perspective, some of them are already in clinical development.
14

Molecular Mechanisms of FLT3-ITD-Induced Leukemogenesis

Nabinger, Sarah Cassidy 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Internal tandem duplications in FMS-like receptor tyrosine kinase (FLT3-ITDs) are seen in approximately 25% of all acute myeloid leukemia (AML) patients. FLT3-ITDs induce FLT3 ligand (FL)-independent cellular hyperproliferation, promiscuous and aberrant activation of STAT5, and confer a poor prognosis in patients; however, the molecular mechanisms contributing to FLT3-ITD-induced malignancy remain largely unknown. The protein tyrosine phosphatase, Shp2, is important for normal hematopoiesis as well as hematopoietic stem cell (HSC) differentiation, engraftment, and self-renewal. Furthermore, FLT3-ITD- or constitutive active STAT5-expressing CD34+ cells demonstrate enhanced hematopoietic stem cell self-renewal. Together with the previous findings that Shp2 is critical for normal hematopoiesis, that dysregulated Shp2 function contributes to myeloid malignancies, and that Shp2 has been shown to interact with WT-FLT3 tyrosine 599, which is commonly duplicated in FLT3-ITDs, a positive role for Shp2 in FLT3-ITD-induced signaling and leukemogenesis is implied. I demonstrated that Shp2 is constitutively associated with the reported FLT3-ITDs, N51-FLT3 and N73-FLT3, compared to WT-FLT3; therefore, I hypothesized that increased Shp2 recruitment to N51-FLT3 or N73-FLT3 contributes to hyperproliferation and hyperactivation of STAT5. I also hypothesized that Shp2 cooperates with STAT5 to activate STAT5 transcriptional targets contributing to the up-regulation of pro-leukemic proteins. Finally, I hypothesized that reduction of Shp2 would result in diminished N51-FLT3-induced hyperproliferation and activation of STAT5 in vitro, and prevent FLT3-ITD-induced malignancy in vivo. I found that genetic disruption of Ptpn11, the gene encoding Shp2, or pharmacologic inhibition of Shp2 with the novel Shp2 inhibitor, II-B08, resulted in significantly reduced FLT3-ITD-induced hematopoietic cell hyperproliferation and STAT5 hyperphosphorylation. I also demonstrated a novel role of Shp2 in the nucleus of FLT3-ITD-expressing hematopoietic cells where Shp2 and STAT5 co-localized at the promoter region of STAT5-transcriptional target and pro-survival protein, Bcl-XL. Furthermore, using a Shp2flox/flox;Mx1Cre+ mouse model, I demonstrated that reduced Shp2 expression in hematopoietic cells resulted in an increased latency to and reduced severity of FLT3-ITD-induced malignancy. Collectively, these findings demonstrate that Shp2 plays an integral role in FLT3-ITD-induced malignancy and suggest that targeting Shp2 may be a future therapeutic option for treating FLT3-ITD-positive AML patients.

Page generated in 0.0201 seconds