• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 71
  • 61
  • 39
  • 10
  • 10
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 526
  • 526
  • 115
  • 99
  • 84
  • 75
  • 63
  • 62
  • 56
  • 56
  • 46
  • 45
  • 43
  • 37
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Betony na bázi tuhých zbytků z fluidního spalování / Concretes based on solid residues from fluidized bed combustion

Darakevová, Michaela January 2015 (has links)
The work is focused on the possible use of secondary raw materials of the energy industry in the construction industry, particularly in concrete applications, where as the main raw material of the binder composition are used solid fluidized bed combustion residues - filter and ground. The aim of this work is to prepare concrete or concretes based on solid residues from fluidized bed combustion, that will fulfill or at least approximately approach by their parameters to commonly used concretes based on portland cement. The experimental part is divided into several chapters, at first the results of analyzes of feedstock and solid residues from fluidized bed combustion, portland cement and calcium hydroxide. Other chapters describe proposals for alternative binders, concrete, characterization and testing. Mainly were observed changing properties of the prepared concretes by changing the ratio of binders and aggregates. In tests were evaluated mainly mechanical properties and phase composition.
112

EFFECTS OF ADDITION OF LARGE PERCENTAGES OF FLY ASH ON LIQUEFACTION BEHAVIOR OF SAND.

Regmi, Gaurav 01 August 2014 (has links)
The liquefaction resistance of a saturated medium sand with varying amount of non-plastic type F fly ash was evaluated by conducting cyclic triaxial tests. The test results were used to evaluate the effect of addition of various percentages of fly ash on the liquefaction resistance of Ottawa sand. The effect of cyclic shear stress and confining pressure on liquefaction resistance of the sand-fly ash mixtures was the main scope of this research. In addition, the Young's Modulus and Damping Ratio for sand-fly ash mixtures were also determined. A comprehensive experimental program was conducted in which 50 stress controlled cyclic triaxial tests were performed on a clean sand, sand containing 25%, 30%, 50% and 70% fly ash at a constant relative density of 50%. The results show that sand containing 25% fly ash has the highest liquefaction resistance under cyclic loading in comparison to clean sand and sand containing 30%, 50% and 70% fly ash. The cyclic resistance goes on decreasing as the fly ash content further increases. The test result also shows that the liquefaction resistance of the clean sand and sand containing 70% fly ii ash is almost same. The test results were also examined in terms of the conceptual framework of Thevanayagam (2000). The effects on liquefaction resistance were also measured in terms of pore water pressure generation and deformation of the sample. As the confining pressure increases, shear stress required to cause initial liquefaction of the sample also increases. Modulus of Elasticity was seen to increase with increase in confining pressure and decrease with increase in axial strain for all cases of sand-fly ash mixtures used in these tests. The damping ratio of the sample increases with the increase in axial strain upto about 1% and then it either decreases or remains constant thereafter. There was no clear correlation of damping ratio with confining pressure.
113

Síntese de zeólitas potássicas a partir de cinza de carvão e aplicação no cultivo de trigo

Flores, Camila Gomes January 2016 (has links)
A combustão do carvão para a produção de energia elétrica tem como consequência a geração de cinzas, que é um dos maiores resíduos gerados no Brasil, em termos de volume (4.109 dm³/ano). Visando a minimização do impacto ambiental causado pelo mau descarte das cinzas, este trabalho teve como objetivo sintetizar e caracterizar zeólitas obtidas a partir de cinza de carvão e aplicar na agricultura como fertilizante potássico. Para isso a cinza utilizada foi obtida no combustor piloto de leito fluidizado operando com carvão da Mina do Leão/RS e empregada para sintetizar material zeolítico a partir do tratamento hidrotérmico alcalino. Foram realizados ensaios experimentais utilizando razão solução/cinzas constante em 6 L mg-1, variando a concentração de hidróxido de potássio (KOH) entre 3 e 5 M, a temperatura entre 100 e 150 ºC e o tempo de reação entre 24 e 72 h. O material sintetizado e a cinza foram caracterizados quanto a sua composição química, mineralógica, morfologia, área superficial específica e capacidade de troca catiônica. Através da caracterização foi observada a formação de duas fases zeolíticas, a chabazita-K e a merlinoíta. A partir da caracterização do material, foi escolhido um dos produtos zeolíticos obtidos para aplicação em solo, como fertilizante de potássio para o cultivo de trigo (Triticum aestivum L.). A condição experimental escolhida foi de 5 M a concentração da solução de KOH, temperatura de 150 ºC e tempo de reação de 24 h. Nesta condição obteve-se apenas uma fase zeolítica identificada, a zeólita merlinoíta, com uma área superficial de 23,37 m² g e uma capacidade de troca catiônica (CTC) de 2,62 meq g 1. Para fins de comparação foi utilizado o fertilizante comercial, cloreto de potássio (KCl), que contém em torno de 60 % de K2O. Foram realizados 35 ensaios experimentais em casa de vegetação da EMBRAPA, utilizando 7 tratamentos (3 doses diferentes de KCl e zeólita 50, 100 e 150 % da dose máxima recomendada e o solo não tratado (testemunha)) em 5 blocos aleatórios. Os experimentos na casa de vegetação foram concluídos com 59 dias de cultivo de trigo e submetidos às análises como determinação da produção de matéria seca da parte aérea e raízes das plantas e análise química do solo e tecido foliar. Verificou-se que a zeólita merlinoíta obtida a partir da cinza de carvão pode ser utilizada como fertilizante, pois teve um desempenho similar ao KCl no crescimento do trigo, não inibindo seu crescimento. Utilizando o tratamento com zeólita 100 % a produção de matéria seca da parte aérea foi de 1,07 ± 0,09 g e raízes 1,6 ± 0,23 g e na análise do tecido foliar teve uma absorção de 3,39 ± 0,31. / Coal combustion for electricity production results in the generation of ash, which is one of the main waste generated in Brazil in terms of volume. Intending the minimization of the environmental impact caused by poor disposal of ashes, this study aimed to synthesize and characterize zeolites obtained from coal ash and apply in agriculture as potassium fertilizer. For this purpose, coal fly ash was obtained from a fluidized bed pilot combustor operating with coal from Mina do Leão/RS and used to synthesize zeolitic material through the alkaline hydrothermal treatment. Experimental tests were performed using the ratio volume of solution/mass of coal fly ash constant at 6 mL mg -1, varying the concentration of potassium hydroxide (KOH) between 3 and 5 M, temperature between 100 and 150 °C and reaction time between 24 and 72 h. The synthesized and coal fly ash material was characterized by their chemical composition, mineralogy, morphology, specific surface area and cation exchange capacity. With the characterization, it was observed the formation of two phases zeolite K-chabazite and merlinoite. By the characterization of the material, it was chosen one of the zeolitic products obtained for application to soil as a potassium fertilizer for the cultivation of wheat (Triticum aestivum L.). The chosen experimental condition was 5 M KOH solution, temperature of 150 °C and 24 h time of reaction. At this condition, only one zeolitic phase was identified, zeolite merlinoite, with a surface area of 23.37 m² g a cation exchange capacity (CEC) of 2.62 meq g-1. For purposes of comparison, the tests in the soil were performed using also a commercial fertilizer, potassium chloride (KCl), containing about 60 % of K2O. A total of 35 experimental trials were carried out in a greenhouse at EMBRAPA, using 7 treatments in 5 random blocks: 50, 100 and 150 % of the maximum recommended dose for KCl and for zeolite and untreated soil (witness). The experiments in the greenhouse were concluded with 59 days of wheat cultivation. The plants were submitted to analysis for dry matter in aerial parts and roots determination. Likewise, soil and foliar tissue were submitted to chemical analysis. It was found that the zeolite Merlinoite obtained from the coal fly ash can be used as a fertilizer because it had a similar performance to KCl in the wheat growth. The treatment with 100% zeolite presented a dry matter production of 1.07 ± 0.09 g for aerial parts and 1.6 ± 0.23 g for roots. Also, the leaf tissue analysis showed a potassium absorption of 3.39 ± 0.31 % m/m in this treatment.
114

Utilização de zeólitas sintetizadas a partir de cinzas de carvão na remoção de corante em água / Utilization of zeolites synthesized from fly ash on the removal of dye from aqueous solution

BRUNO, MARIZA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:52:41Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:13Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
115

The effect of different Ordinary Portland cement binders, partially replaced by fly ash and slag, on the properties of self-compacting concrete

Almuwbber, Omar Mohamed January 2015 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Civil Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology / Self-compacting concrete (SCC) is a flowable self-consolidating concrete which can fill formwork without any external vibration. A self-compacting concrete mix requires the addition of superplasticiser (SP), which allows it to become more workable without the addition of excessive water to the mixture. The effect of different CEM I 52.5N cements produced by one company at different factories on self-compacting concrete was investigated. The properties of SCC are highly sensitive to changes in material properties, water content and addition of admixtures. For self-compacting concrete to be more accepted in South Africa, the effect that locally sourced materials have on SCC, partially replaced with extenders, needs to be investigated. The European guidelines for SCC (2005) determined the standard, through an extensive study, for the design and testing of self-compacting concrete. Using these guidelines, the properties of self-compacting concrete with the usage of local materials were investigated. The effect on SCC mixes was studied by using four cements; two types of SPs – partially replaced with two types of fly ash; and one type of slag. Mix design and tests were done according to the European Specification and Guidelines for Self-Compacting Concrete (2005). Using locally sourced materials (different cements, sand, coarse aggregate, fly ashes and slag), mixes were optimised with different SPs. Optimisation was achieved when self-compacting criteria, as found in the European guidelines, were adhered to, and the binders in these required mixes were then partially replaced with fly ash and slag at different concentrations. Tests done were the slump flow, V-funnel, L-box, sieve segregation resistance as well as the compressive strength tests. The results obtained were then compared with the properties prescribed by the European guidelines. The cements reacted differently when adding the SPs, and partially replacing fly ash and slag. According to the tests, replacing cement with extenders – in order to get a sufficient SCC – seemed to depend on the chemical and physical properties of each cement type, including the soluble alkali in the mixture, C3A, C3S and the surface area. The range, in which the concentration of these chemical and physical cement compounds should vary – in order to produce an acceptable SCC partially replaced by extenders – was determined and suggested to the cement producer. The main conclusion of this project is that cement properties vary sufficiently from factory to factory so as to influence the performance of an SCC mix. The problem becomes even bigger when such cements are extended with fly ash or slag, and when different SPs are used. When designing a stable SCC mix, these factors should be taken into account.
116

Synthesis of zeolite (ZSM-5 and Faujasite) and geopolymer from South African coal fly ash

Ndlovu, Nkululeko Zenzele Neville January 2016 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2016. / Population growth in South Africa has led to a direct increase in electricity demand. Due to the abundance of coal in the country, most of the energy requirement is met through coal combustion. Although there is a vast coal resource, the natural high grade coal is mainly exported, while the low grade coal is exploited for electricity generation. The combustion of low grade coal during electricity production results in huge quantities of coal fly ash (CFA) that require careful disposal, due to its toxicity. Poor management of this waste constitutes serious human and environmental problems, such as respiratory diseases, contamination of soil, surface water and groundwater. This is in part due to the fact that only a small percentage of fly ash is utilised efficiently in the construction industry. Several studies have recently been conducted into the use of CFA as a starting material for the synthesis of zeolites and geopolymers, due to its high silicon and aluminium content. However, the synthesis of zeolites from CFA has been subject to criticism, because the synthesis of zeolites from the bulk CFA results in zeolite products that are mixed with non-reacted fly ash and toxic elements. On the other hand, pure phase zeolites can only be synthesised from CFA extracts, which results in a small yield of the zeolite products and a huge amount of solid waste. Therefore, this does not facilitate either the use of fly ash-based zeolites as catalysts in advanced chemical processes or scaling up of the synthesis process. This study seeks to make optimal use of CFA by developing a method for optimal extraction of Si and Al for the synthesis of ZSM-5 and faujasite zeolites, and use the resulting solid waste for the synthesis of geopolymers such that the resultant waste is minimised or completely eliminated. Two distinct processes are employed in this study to synthesise ZSM-5 or faujasite zeolite from CFA extracts, while the solid residue is transformed into a geopolymer. In the first process, an alkaline leaching method is employed for extraction of Si from CFA using 8 M NaOH at 150 0C for 24 h. It was found that the Si extract contained a certain amount of Al, enough for the synthesis of a high silica zeolite such as ZSM-5. However, the Si extract had to be treated with oxalic acid in order to remove the excess Na in the extract, since this could prevent the formation of ZSM-5. The obtained Si extract was then used as a feedstock for the synthesis of Zeolite ZSM-5 with NaOH and tetraethyl ammonium hydroxide (TEAOH) as mineralising and structure directing agents respectively. The obtained gel underwent hydrothermal synthesis at 160 °C for 72 h, while the solid residue obtained after Si extraction was used in the synthesis of geopolymer at 70 °C for 5 days. The obtained ZSM-5 and geopolymer products were characterised using ICP, XRD, SEM, FTIR and NMR techniques.
117

Síntese de zeólitas potássicas a partir de cinza de carvão e aplicação no cultivo de trigo

Flores, Camila Gomes January 2016 (has links)
A combustão do carvão para a produção de energia elétrica tem como consequência a geração de cinzas, que é um dos maiores resíduos gerados no Brasil, em termos de volume (4.109 dm³/ano). Visando a minimização do impacto ambiental causado pelo mau descarte das cinzas, este trabalho teve como objetivo sintetizar e caracterizar zeólitas obtidas a partir de cinza de carvão e aplicar na agricultura como fertilizante potássico. Para isso a cinza utilizada foi obtida no combustor piloto de leito fluidizado operando com carvão da Mina do Leão/RS e empregada para sintetizar material zeolítico a partir do tratamento hidrotérmico alcalino. Foram realizados ensaios experimentais utilizando razão solução/cinzas constante em 6 L mg-1, variando a concentração de hidróxido de potássio (KOH) entre 3 e 5 M, a temperatura entre 100 e 150 ºC e o tempo de reação entre 24 e 72 h. O material sintetizado e a cinza foram caracterizados quanto a sua composição química, mineralógica, morfologia, área superficial específica e capacidade de troca catiônica. Através da caracterização foi observada a formação de duas fases zeolíticas, a chabazita-K e a merlinoíta. A partir da caracterização do material, foi escolhido um dos produtos zeolíticos obtidos para aplicação em solo, como fertilizante de potássio para o cultivo de trigo (Triticum aestivum L.). A condição experimental escolhida foi de 5 M a concentração da solução de KOH, temperatura de 150 ºC e tempo de reação de 24 h. Nesta condição obteve-se apenas uma fase zeolítica identificada, a zeólita merlinoíta, com uma área superficial de 23,37 m² g e uma capacidade de troca catiônica (CTC) de 2,62 meq g 1. Para fins de comparação foi utilizado o fertilizante comercial, cloreto de potássio (KCl), que contém em torno de 60 % de K2O. Foram realizados 35 ensaios experimentais em casa de vegetação da EMBRAPA, utilizando 7 tratamentos (3 doses diferentes de KCl e zeólita 50, 100 e 150 % da dose máxima recomendada e o solo não tratado (testemunha)) em 5 blocos aleatórios. Os experimentos na casa de vegetação foram concluídos com 59 dias de cultivo de trigo e submetidos às análises como determinação da produção de matéria seca da parte aérea e raízes das plantas e análise química do solo e tecido foliar. Verificou-se que a zeólita merlinoíta obtida a partir da cinza de carvão pode ser utilizada como fertilizante, pois teve um desempenho similar ao KCl no crescimento do trigo, não inibindo seu crescimento. Utilizando o tratamento com zeólita 100 % a produção de matéria seca da parte aérea foi de 1,07 ± 0,09 g e raízes 1,6 ± 0,23 g e na análise do tecido foliar teve uma absorção de 3,39 ± 0,31. / Coal combustion for electricity production results in the generation of ash, which is one of the main waste generated in Brazil in terms of volume. Intending the minimization of the environmental impact caused by poor disposal of ashes, this study aimed to synthesize and characterize zeolites obtained from coal ash and apply in agriculture as potassium fertilizer. For this purpose, coal fly ash was obtained from a fluidized bed pilot combustor operating with coal from Mina do Leão/RS and used to synthesize zeolitic material through the alkaline hydrothermal treatment. Experimental tests were performed using the ratio volume of solution/mass of coal fly ash constant at 6 mL mg -1, varying the concentration of potassium hydroxide (KOH) between 3 and 5 M, temperature between 100 and 150 °C and reaction time between 24 and 72 h. The synthesized and coal fly ash material was characterized by their chemical composition, mineralogy, morphology, specific surface area and cation exchange capacity. With the characterization, it was observed the formation of two phases zeolite K-chabazite and merlinoite. By the characterization of the material, it was chosen one of the zeolitic products obtained for application to soil as a potassium fertilizer for the cultivation of wheat (Triticum aestivum L.). The chosen experimental condition was 5 M KOH solution, temperature of 150 °C and 24 h time of reaction. At this condition, only one zeolitic phase was identified, zeolite merlinoite, with a surface area of 23.37 m² g a cation exchange capacity (CEC) of 2.62 meq g-1. For purposes of comparison, the tests in the soil were performed using also a commercial fertilizer, potassium chloride (KCl), containing about 60 % of K2O. A total of 35 experimental trials were carried out in a greenhouse at EMBRAPA, using 7 treatments in 5 random blocks: 50, 100 and 150 % of the maximum recommended dose for KCl and for zeolite and untreated soil (witness). The experiments in the greenhouse were concluded with 59 days of wheat cultivation. The plants were submitted to analysis for dry matter in aerial parts and roots determination. Likewise, soil and foliar tissue were submitted to chemical analysis. It was found that the zeolite Merlinoite obtained from the coal fly ash can be used as a fertilizer because it had a similar performance to KCl in the wheat growth. The treatment with 100% zeolite presented a dry matter production of 1.07 ± 0.09 g for aerial parts and 1.6 ± 0.23 g for roots. Also, the leaf tissue analysis showed a potassium absorption of 3.39 ± 0.31 % m/m in this treatment.
118

Utilização de zeólitas sintetizadas a partir de cinzas de carvão na remoção de corante em água / Utilization of zeolites synthesized from fly ash on the removal of dye from aqueous solution

BRUNO, MARIZA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:52:41Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:13Z (GMT). No. of bitstreams: 0 / Os experimentos de adsorção descontínuos foram realizados para remover azul de metileno de solução aquosa usando zeólitas sintetizadas a partir de cinza leve de carvão como adsorvente. Os estudos foram conduzidos para avaliar os efeitos do tempo de contato, concentração inicial do corante, parâmetros de ativação hidrotérmica, composição da cinza leve, quantidade do adsorvente, pH e temperatura sobre a adsorção. Um tempo de contato de aproximadamente 10 minutos foi suficiente para a adsorção do corante alcançar o equilíbrio. Os dados de equilíbrio foram analisados usando as isotermas de Langmuir e Freundlich e os resultados se ajustaram melhor à equação da isoterma de Freundlich. A eficiência de adsorção estava entre 72 a 98% sob as condições estudadas. O valor da constante de Freundlich para a capacidade de adsorção (KF) do azul de metileno no adsorvente foi 0,738 (mg/g) (L/mg)1/n. Os dados de adsorção foram ajustados aos modelos cinéticos de pseudoprimeira- ordem de Lagergren e pseudo-segunda-ordem e seguiram as cinéticas de pseudosegunda- ordem. As constantes de velocidade foram estimadas em diferentes concentrações iniciais. O mecanismo do processo de adsorção encontrado mostrou-se complexo, consistindo de adsorção superficial e difusão intrapartícula. Os parâmetros termodinâmicos foram avaliados indicando que o processo de adsorção do azul de metileno sobre a zeólita é espontâneo e exotérmico. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
119

Surface modification of coal fly ash by sodium lauryl sulphate

Mathebula, Confidence Lethabo 22 May 2013 (has links)
Thirty million tons of coal fly ash are produced each year in South Africa of which approximately 5% is utilised beneficially. With the growing concern about pollution and increasing landfill costs, the study of the utilisation and application of coal fly ash has increased worldwide. The morphology and particle size of fly ash make it suitable for application as filler in polymers, but its application is hindered by the lack of compatibility between the inorganic surface of the ash and the organic matrix of the polymer. Another concern is the agglomeration between fly ash particles. For this reasons, surface treatment is usually performed on mineral fillers to enhance workability and compatibility between the polymer and filler. This study involved the surface modification of South African coal fly ash with an anionic surfactant, sodium lauryl sulphate (SLS), under different treatment conditions. Surface and physical properties of the untreated and treated fly ash were studied systematically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to determine the extent of interaction between the SLS and the fly ash surface. Other analytical techniques applied include Thermogravimetric analysis (TGA-FTIR), Particle size distribution, X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), Raman spectroscopy and Fourier Transform Infrared spectroscopy FTIR). Although the overall chemical composition of the SLS modified coal fly ash investigated in this study was not altered extensively, significant changes could be observed in its physical properties. The hydrophilic surface of untreated fly ash was rendered hydrophobic after SLS treatment. SEM results indicated a decrease in agglomeration between fly ash spheres upon surfactant treatment, while results obtained from TEM have shown agglomerates on the surface of most of the fly ash spheres. There is a distinct difference between the morphology of agglomerates on the untreated and SLS modified fly ash, and also between samples treated under different conditions. Not all SLS modified fly ash particles were covered with agglomerates to the same degree. Results obtained from FTIR and TGA-FTIR studies were promising in the sense that hydrocarbon fractions could be observed in the TGA-FTIR decomposition products. The possibility of interactions between fly ash and SLS could be deduced from the FTIR results of the solid samples, due to a small shift in peak positions of the S-O stretch vibration, which may be indicative of electrostatic interactions rather than bonding interactions between SLS and fly ash. The presence of SLS could not be confirmed by Raman spectroscopy, but rendered information about the spatial distribution of the various phases in the fly ash. Feasibility tests were performed on the application of fly ash samples as filler in PVC. These results indicate that SLS treated fly ash can successfully replace CaCO3 as filler in PVC under conditions of low filler loadings / Dissertation (MSc)--University of Pretoria, 2013. / Chemistry / unrestricted
120

Chemistry and speciation of potentially toxic and radioactive elements during mine water treatment

Madzivire, Godfrey January 2012 (has links)
Philosophiae Doctor - PhD / Mine water poses a serious environmental challenge and contains elements such as Fe, Al, and Mn in potentially toxic concentrations. The major anion in mine water is sulphate. The complexity and diversity of mine water composition makes its treatment very expensive, and there is no “one-fits-all” treatment option available for mine water. Active treatment of mine water produces water with good quality but the processes are not sustainable because of the costs. Previous studies have shown that acid mine drainage can be treated with coal FA to produce better quality water. The use of coal FA, a waste material from coal fired power station and mine water would go a long way in achievement of sustainable treatment of mine water as per previous studies. In this study mine water and coal FA were characterized to determine their physiochemical properties. This study linked the modelling results obtained by using the Geochemist’s workbench (GWB) software to the results obtained during the actual treatment of Matla mine water and Rand Uranium mine water using coal FA and lime. The chemistry involved when Matla mine water and Rand Uranium mine water were treated with flocculants was also investigated. Lastly the chemistry and kinetics involved was investigated when mine water was treated with various ameliorants such as Matla coal FA, lime and/or Al(OH)3 using jet loop mixing or overhead stirring. Mine water from Matla coal mine had a pH of 8 and therefore was classified as neutral mine drainage (NMD). Rand Uranium mine water had a pH of less than 3 and therefore was classified as acid mine drainage (AMD). The concentration of sulphate, Na, Ca, Mg, B, Hg, Se and Cd ions in Matla mine water was 1475, 956, 70, 40, 15, 2.43, 1.12 and 0.005 mg/L respectively. The concentration of sulphate, Fe, Ca, Mn, Mg, Al, B, Cr, Pb, U, Cd, Se and As ions in Rand Uranium mine water was 4126, 896, 376, 282, 155, 27, 5.43, 3.15, 0.51, 0.29, 0.007, 0.06 and 0.006 mg/L respectively . These concentrations were above the target water quality range (TWQR) for potable water set by the Department of Water Affairs (DWA) and World Health Organization (WHO). The gross alpha radioactivity was 6.01 Bq/L and gross beta radioactivity was 6.05 Bq/L in Rand Uranium mine water.

Page generated in 0.3883 seconds