• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 392
  • 77
  • 75
  • 35
  • 15
  • 13
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • Tagged with
  • 827
  • 559
  • 147
  • 136
  • 88
  • 82
  • 75
  • 73
  • 58
  • 53
  • 52
  • 50
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Folding and Stability Studies on Amyotrophic Lateral Sclerosis-Associated apo Cu, Zn Superoxide dismutases

Vassall, Kenrick January 2009 (has links)
Amyotrophic lateral sclerosis (ALS) is a debilitating, incurable, neurodegenerative disease characterized by degradation of motor neurons leading to paralysis and ultimately death in ~3-5 years. Approximately 10% of ALS cases have a dominant inheritance pattern, termed familial ALS (fALS). Mutations in the gene encoding the dimeric superoxide scavenger Cu, Zn superoxide dismutase (SOD), were found to be associated with ~20% of fALS cases. Over 110 predominantly missense SOD mutations lead to fALS by an unknown mechanism; however, it is thought that mutant SOD acquires a toxic gain of function. Mice as well as human post mortem studies have identified mutant SOD-rich aggregates in affected neurons, leading to the hypothesis that mutations in SOD increase the tendency of the protein to form toxic aggregates. SOD has a complex maturation process whereby the protein is synthesized in an apo or demetalated state, followed by formation of an intramolecular disulfide bond and binding of Zn2+ and Cu2+. Each of these post-translational modifications increases the stability of the protein. SOD has been shown to aggregate more readily from destabilized immature states, including the apo state both with and without the disulfide bond, highlighting the importance of these states. Thermal unfolding monitored by differential scanning calorimetry (DSC) and chemical denaturation monitored by optical spectroscopy were used to elucidate the folding mechanism and stability of both the apo SOD disulfide-intact and disulfide-reduced states. Chemically and structurally diverse fALS-associated mutants were investigated to gain insights into why mutant SODs may be more prone to misfold and ultimately aggregate. The mutations were introduced into a pseudo wild-type (PWT) background lacking free cysteines, resulting in highly reversible unfolding amenable to accurate thermodynamic analysis. Similarly to what was previously described for fully metallated (holo) SODs, chemical denaturation of the apo disulfide-intact SODs is well described by a 3-state dimer mechanism with native dimer, monomeric intermediate and unfolded monomer populated at equilibrium. Although removal of metals has a relatively small effect on the stability of the dimer interface, the stability of the monomer intermediate is dramatically reduced. Thermal unfolding of some disulfide-intact apo SOD mutants as well as PWT is well described by a 2-state dimer mechanism, while others unfold via a 3-state mechanism similar to chemical denaturation. All but one of the studied disulfide-intact apo mutations are destabilizing as evidenced by reductions in ΔG of unfolding. Additionally, several mutants show an increased tendency to aggregate in thermal unfolding studies through increased ratios of van’t Hoff to calorimetric enthalpy (HvH/ Hcal ). The effects of the mutations on dimer interface stability in the apo disulfide-intact form were further investigated by isothermal titration calorimetry (ITC) which provided a quantitative measure of the dissociation constant of the dimer (Kd). ITC results revealed that disulfide-intact apo SOD mutants generally have increased Kd values and hence favor dimer dissociation to the less stable monomer which has been proposed to be a precursor to toxic aggregate formation. Reduction of the disulfide bond in apo SOD leads to marked destabilization of the dimer interface, and both thermal unfolding and chemical denaturation of PWT and mutants are well described by a 2-state monomer unfolding mechanism. Most mutations destabilize the disulfide-reduced apo SOD to such an extent that the population of unfolded monomer under physiological conditions exceeds 50%. The disulfide-reduced apo mutants show increased tendency to aggregate relative to PWT in DSC experiments through increased HvH /Hcal, low or negative change in heat capacity of unfolding and/or decreased unfolding reversibility. Further evidence of enhanced aggregation tendency of disulfide-reduced apo mutants was derived from analytical ultracentrifugation sedimentation equilibrium experiments that revealed the presence of weakly associated aggregates. Overall, the results presented here provide novel insights into SOD maturation and the possible impact of stability on aggregation.
182

Folding and Stability Studies on Amyotrophic Lateral Sclerosis-Associated apo Cu, Zn Superoxide dismutases

Vassall, Kenrick January 2009 (has links)
Amyotrophic lateral sclerosis (ALS) is a debilitating, incurable, neurodegenerative disease characterized by degradation of motor neurons leading to paralysis and ultimately death in ~3-5 years. Approximately 10% of ALS cases have a dominant inheritance pattern, termed familial ALS (fALS). Mutations in the gene encoding the dimeric superoxide scavenger Cu, Zn superoxide dismutase (SOD), were found to be associated with ~20% of fALS cases. Over 110 predominantly missense SOD mutations lead to fALS by an unknown mechanism; however, it is thought that mutant SOD acquires a toxic gain of function. Mice as well as human post mortem studies have identified mutant SOD-rich aggregates in affected neurons, leading to the hypothesis that mutations in SOD increase the tendency of the protein to form toxic aggregates. SOD has a complex maturation process whereby the protein is synthesized in an apo or demetalated state, followed by formation of an intramolecular disulfide bond and binding of Zn2+ and Cu2+. Each of these post-translational modifications increases the stability of the protein. SOD has been shown to aggregate more readily from destabilized immature states, including the apo state both with and without the disulfide bond, highlighting the importance of these states. Thermal unfolding monitored by differential scanning calorimetry (DSC) and chemical denaturation monitored by optical spectroscopy were used to elucidate the folding mechanism and stability of both the apo SOD disulfide-intact and disulfide-reduced states. Chemically and structurally diverse fALS-associated mutants were investigated to gain insights into why mutant SODs may be more prone to misfold and ultimately aggregate. The mutations were introduced into a pseudo wild-type (PWT) background lacking free cysteines, resulting in highly reversible unfolding amenable to accurate thermodynamic analysis. Similarly to what was previously described for fully metallated (holo) SODs, chemical denaturation of the apo disulfide-intact SODs is well described by a 3-state dimer mechanism with native dimer, monomeric intermediate and unfolded monomer populated at equilibrium. Although removal of metals has a relatively small effect on the stability of the dimer interface, the stability of the monomer intermediate is dramatically reduced. Thermal unfolding of some disulfide-intact apo SOD mutants as well as PWT is well described by a 2-state dimer mechanism, while others unfold via a 3-state mechanism similar to chemical denaturation. All but one of the studied disulfide-intact apo mutations are destabilizing as evidenced by reductions in ΔG of unfolding. Additionally, several mutants show an increased tendency to aggregate in thermal unfolding studies through increased ratios of van’t Hoff to calorimetric enthalpy (HvH/ Hcal ). The effects of the mutations on dimer interface stability in the apo disulfide-intact form were further investigated by isothermal titration calorimetry (ITC) which provided a quantitative measure of the dissociation constant of the dimer (Kd). ITC results revealed that disulfide-intact apo SOD mutants generally have increased Kd values and hence favor dimer dissociation to the less stable monomer which has been proposed to be a precursor to toxic aggregate formation. Reduction of the disulfide bond in apo SOD leads to marked destabilization of the dimer interface, and both thermal unfolding and chemical denaturation of PWT and mutants are well described by a 2-state monomer unfolding mechanism. Most mutations destabilize the disulfide-reduced apo SOD to such an extent that the population of unfolded monomer under physiological conditions exceeds 50%. The disulfide-reduced apo mutants show increased tendency to aggregate relative to PWT in DSC experiments through increased HvH /Hcal, low or negative change in heat capacity of unfolding and/or decreased unfolding reversibility. Further evidence of enhanced aggregation tendency of disulfide-reduced apo mutants was derived from analytical ultracentrifugation sedimentation equilibrium experiments that revealed the presence of weakly associated aggregates. Overall, the results presented here provide novel insights into SOD maturation and the possible impact of stability on aggregation.
183

The folding kinetics of ribonuclease Sa and a charge-reversal variant

Trefethen, Jared M. 17 February 2005 (has links)
The primary objective was to study the kinetics of folding of RNase Sa. Wild-type RNase Sa does not contain tryptophan. A tryptophan was substituted at residue 81 (WT*) to allow fluorescence spectroscopy to be used to monitor folding. This tryptophan mutation did not change the stability. An analysis of the folding kinetics of RNase Sa showed two folding phases, indicating the presence of an intermediate and consistent with the following mechanism: D ↔ I ↔ N. Both refolding limbs of the chevron plot (abcissa = final conc. of denaturant and ordinate = kinetic rate) had non-zero slopes suggesting that proline isomerization was not rate-limiting. The conformational stability of a charge-reversed variant, WT*(D17R), of a surface exposed residue on RNase Sa has been studied by equilibrium techniques. This mutant with a single amino acid charge reversal of a surface exposed residue resulted in decreased stability. Calculations using Coulomb’s Law suggested that favorable electrostatic interactions in the denatured state were the cause for the decreased stability for the charge-reversed variant. Folding and unfolding kinetic studies were designed and conducted to study the charge-reversal effect. Unfolding kinetics showed a 10-fold increase in the unfolding rate constant for WT*(D17R) over WT* and no difference in the rate of refolding. Kinetics experiments were also conducted at pH 3 where protonation of Asp17 (charge reversal site) would be expected to negate the observed kinetic effect. At pH 3 the kinetics of unfolding of WT* RNase Sa and the WT*(D17R) mutant were more similar. These kinetic results indicate that a single-site charge reversal lowered the free energy of the denatured state as suspected. Additionally, the results showed that the transition state was stabilized as well. These results show that a specific Coulombic interaction lowered the free energy in the denatured and transition state of the charge-reversal mutant, more than in WT*. To our knowledge, this is the first demonstration that a favorable electrostatic interaction in the denatured state ensemble has been shown to influence the unfolding kinetics of a protein.
184

An energy landscaping approach to the protein folding problem

Sapsaman, Temsiri 16 November 2009 (has links)
The function of a protein is largely dictated by its natural shape called the "native conformation." Since the native conformation and the global minimum energy configuration highly correlate, predicting this conformation is a global optimization known as the "protein folding problem." It is computationally intensive due to the high-dimensional and complex energy landscape. Typical conformation algorithms combine a probabilistic search with analytical optimization. The analytical portion typically takes longer than the probabilistic part since more function evaluations are required, which are algorithm bottlenecks. To reduce the computational cost, this research studies the effects of exponential energy landscaping (XEL) on three analytical optimization algorithms: Newton's method, a quasi-Newton algorithm (QNA), and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The XEL changes the heights and the depths of the extrema but keeps their location the same, which eliminates the troublesome process of remapping minima onto the original landscape. The Newton-XEL is found to have a similar convergence property as Newton's method by showing that their error residues are of the same order. Found by observation, stability and convergence are improved when the error residue is bounded. While XEL is found to have no effect on the similarity of resulting configurations to the native conformation, results show that the XEL can improve the speed in terms of average iterations in the QNA by 47% and in the BFGS by 41%. In terms of the average score improvement, which indicates how the energy of the resulting configuration is compared to that of the initial configuration, the XEL can improve the quality of resulting configurations in the QNA by 12% and in the BFGS by 10%. Since both results were not achieved simultaneously, the adaptive exponential energy landscaping (AXEL) is developed. The results lead to the conclusion that a trade-off between quality and speed must be considered when XEL is implemented. To improve speed by 15% to 47% and efficiency by 13% to 75%, XEL with n within 2⁻⁹-2⁻⁵ should be used and to improve quality by 4% to 7%, AXEL with Scheme E that keeps the error residue bounded should be used.
185

Solution Structure Studies on the Effects of Aromatic Interactions and Cross-Strand Disulfide Bonds on Protein Folding

Balakrishnan, Swati January 2017 (has links) (PDF)
The work presented in this thesis focusses primarily on the determination of protein structure at atomic resolution, with NMR spectroscopy as the principle investigative tool. The thesis is divided into four parts. Part I consists of Chapter 1 which provides an introduction to protein structure, folding and NMR spectroscopy. Part II, consisting of Chapters 2 and 3, describes the effects of aromatic interactions on nucleating structure in disordered regions of proteins, using variants of apo-cytochrome b5 as a model system. Part III consists of Chapter 4, which describes structural effects of introducing cross-strand disulfide bonds using variants of Thioredoxin. Part IV of this thesis consists of the Appendices A, B and C. Appendix A describes the purification and characterization of ilvM, the regulatory subunit of the E.coli enzyme AHAS II. Appendices B and C contain chemical shift information corresponding to Chapter 3 and Chapter 4 respectively. Part I : Introduction to protein structure, folding and solution structure studies Chapter 1 first gives a brief overview of protein structure followed by an introduction to protein folding, focussing on the forces involved in determining the final three-dimensional shape of the protein as well as the experimental and computational techniques involved in studying or predicting the fold of a given protein. The second section of this chapter details the methodology followed to obtain solution structures of proteins using NMR spectroscopy. Part II : Engineering aromatic interactions to nucleate folding in intrinsically disordered regions of proteins Chapter 2 describes site-specific mutagenesis, recombinant over-expression, purifica-tion and preliminary biophysical characterization of two aromatic mutants of the molten globule apo-cytochrome b5 (apocytb5) : H43F H67F cytochrome b5 (FFcytb5) and H43W H67F cytochrome b5 (WFcytb5). Analysis of the structure of wild-type apo - cytochrome b5 was done to introduce surface mutations and avoid perturbation of the interior pack-ing of the protein. The bacterial host E.coli BL21(DE3) was used for recombinant over-expression, and both mutant proteins were purified by anion-exchange chromatography followed by size-exclusion chromatography. Biophysical studies show a decrease in the hydrodynamic radii and surface hydropho-bicity of FFcytb5 and WFcytb5 compared to wt -apo cytb5. An increase in protein stability was also seen from the wt apocytb5 to WFcytb5 and FFcytb5 in the presence of the chemical denaturant Urea. Proton 1D NMR spectra exhibited sharp lines and good spectral dispersion in the amide region, indicating that both mutant proteins are well folded. In addition, conservation of two distinctive up field and downfield shifted resonances present in apocytb5 indicated that structural changes upon mutation accrued on the upon the scaffold of apocytb5. Chapter 3 describes solution structure studies to determine secondary and tertiary structure of FFcytb5 and WFcytb5. Structural studies were carried out using homonu-clear and heteronuclear NMR methods, for which isotopically enriched 15N- and 13C, 15N samples were prepared for each protein. Additionally a 2H, 13C, 15N ILV methyl labeled sample was prepared for FFcytb5 to obtain unambiguous NOE correlation data. The hydrogen bond network for WFcytb5 was determined using hydrogen/deuterium exchange data. The restraints required to define the orientations and interactions of the aromatic groups were obtained from 15N-edited NOESY HSQC, 13C -edited NOESY HSQC and 2D 1H - 1H NOE spectra. These correlations were crucial in determining the aromatic interactions present within each protein. The structure of FFcytb5 was calculated using 1163 NOE distance restraints, 179 φ and ψ dihedral angle restraints, along with 40 hydrogen bond restraints. Similarly the structure of WFcytb5 was calculated using 1282 NOE distance restraints, 177 φ and ψ dihedral angle restraints and 40 hydrogen bond restraints. The ensemble of structures obtained for FFcytb5 showed a root mean square deviation of 1.01±0.21 Å . The ensemble of structures obtained for WFcytb5 showed a root mean square deviation of 0.58±0.09 Å . In both cases, ≈ 80% of backbone dihedral angles were found to be in the allowed regions and ≈ 20% in the additionally allowed regions of the Ramachandran map. The final tertiary structure of both FFcytb5 and WFcytb5 consisted of a mixed four strand β -sheet with a four helix bundle resting on top and were seen to align well, with an RMSD of 0.6 Å. A comparison of the solution structures of apocytb5 with FFcytb5 and WFcytb5 convincingly showed the nucleation secondary and tertiary structure well beyond the site of mutation. The presence of aromatic trimers, non-canonical in context of the wt apoc-ytb5, was confirmed upon analysis of the structures of FFcytb5 and WFcytb5, with NOE correlations assigned to verify these interactions. The reduction in the hydrodynamic radii of FFcytb5 and WFcytb5 in relation to apocytb5 was also verified from tsuperscript15N-NMR relaxometry studies. The nucleation of long-range structure using aromatic interactions has been demonstrated in proteins for the first time, and can in principle be used to incorporate aromatic residues and interactions in protein design. Structural data, chemical shift data and restraints lists used for structure calculation of WFcytb5 and FFcytb5 were deposited with the PDB (accession numbers 5XE4 and 5XEE) and BMRB(accession numbers 36070, 36071) respectively1. Part III : Structural consequences of introducing disulfide bonds into β - sheets Chapter 3 describes the solution structure studies on two mutants of E.coli Thiore-doxin which were designed to incorporate a disulfide bond between two anti-parallel β-strands at the edge of the β-sheet. One mutant was designed with a disulfide bond at the hydrogen bonding position (HB, 78c90cTrx) and the other with the disulfide bond at the non-hydrogen bonding position (NHB, 77c91cTrx). Here we study the structural changes that accompany the introduction of a cross-strand disulfide and whether such structural changes could be correlated with the previously seen thermodynamic and catalytic changes. Solution structure studies were conducted using a suite of multidimensional heteronu-clear NMR experiments, for which isotopically enriched 15N and 13C, 15N labelled samples were used. The solution structure for 77c91cTrx was calculated using 1190 NOE distance restraints, 199 φ and ψ dihedral angle restraints and 48 hydrogen bond restraints. The solution structure for 78c90cTrx was calculated using 1123 NOE distance restraints, 197 φ and ψ dihedral angle restraints and 50 hydrogen bond restraints. The ensemble of structures for 77c91cTrx showed an RMSD of 0.78± 0.13 Å while the RMSD for the ensemble of structures of 78c90cTrx was seen to be 0.76±0.09 Å . In both cases, ≈ 80% of backbone dihedral angles were seen to be in the allowed regions and ≈ 20% in the additionally allowed regions of the Ramachandran map. The tertiary structures of both proteins were seen to have a 5-strand mixed β-sheet and 4 helices surrounding it. . A comparison of the solution structures of mutant and wt -Trx showed significant changes in secondary and tertiary structure. For example, an α helix was reduced from 3 turns to a single turn, and of the β-strands containing the mutation was elongated by 3 residues. A ≈ 50% loss of hydrogen bonds, primarily from the β -sheet, was seen for both mutants. The secondary and tertiary structure for both 77c91cTrx and 78c90cTrx was seen to be near identical, despite the greater strain of the disulfide bond at the hydrogen bonding position. In addition to this, the Ile75-Pro76 peptide bond is now seen to be in the trans conformation in 78c90cTrx, while in wt -Trx the Ile75-Pro76 peptide bond is in the cis conformation. This cis peptide bond is known to play a role in both folding and catalysis, and the solution structures were analyzed in the context of observed changes in folding and catalysis. The study shows that introducing disulfide bonds even at the edge of β sheets have long-range structural effects, and the structural effects cannot be directly correlated with the changes in stability. Part III: Appendix Appendix A describes the expression, purification and preliminary characterization of ilvM, the regulatory subunit of E.coliAHAS II, one of three enzyme isomers that catal-yse the first step in the synthesis of all branched chain amino acids. AHAS II is known to be insensitive to feedback regulation, but our studies showed that the presence of Ile, Leu and Val causes structural changes and increases the stability of ilvM. However we were not able to purify ilvM in sufficient quantities to proceed with solution structure studies. Appendices B and C contain chemical shift information for the structural studies carried out on FFcytb5, WFcytb5, 77c91cTrx and 78c90cTrx.
186

Investigating the In Vitro Oxidative Folding Pathways of Bovine Pancreatic Trypsin Inhibitor (BPTI)

Wang, Yingsong 14 November 2013 (has links)
The oxidative folding pathway of the disulfide containing protein bovine pancreatic trypsin inhibitor (BPTI) was one of the first to be elucidated and has served as a basis for understanding the folding pathways of other proteins. During the oxidative folding of reduced BPTI, two intermediates (N' and N*) accumulate in significant amounts and act as kinetic traps. Both N' and N* bury their two remaining free thiols in their hydrophobic cores, which inhibits further oxidation. Historically, the rate limiting step was considered to be the intramolecular rearrangements of N' and N* to another intermediate with two free thiols, NSH. The two free thiols in NSH are solvent-exposed and easily oxidized to a disulfide, producing native protein (N). Nevertheless, our research using reduced BPTI indicated that the folding rate of N* to N was proportional to the concentration of added glutathione disulfide (GSSG), inconsistent with the slow intramolecular rearrangement of N* to NSH. To confirm our initial results, the intermediate N* was purified and refolded in the presence of GSSG. The conversion of N* to N was dependent upon the disulfide concentration and singly mixed disulfide N*(SG) was observed during folding. These results emphasize that the folding of N* can proceed via a growth type pathway, direct oxidation of the two remaining thiols in N* by an exogenous small molecule disulfide, such as GSSG, to form N. Folding of reduced BPTI via N* was performed under changing concentrations of GSSG and GSH as a function of time. The folding was improved dramatically in terms of rate and yield. Aromatic disulfides and thiols have been demonstrated to improve the folding efficiency of disulfide containing proteins including ribonuclease A (RNase A) and lysozyme. Herein, N* and N' were refolded in the presence of aromatic disulfides. Folding of the two kinetic traps with aromatic disulfides indicated that folding proceed via a growth type pathway. The singly and doubly mixed disulfide intermediates were observed during most folding reactions. The oxidative folding of reduced BPTI with aromatic disulfides and thiols were also investigated. Reduced BPTI can be folded to disulfide intermediates rapidly.
187

Study of co-translational folding of E. coli dihydrofolate reductase using fluorescence resonance energy transfer (FRET)

Kallazhi, Aswathy January 2018 (has links)
In prokaryotes, protein synthesis and folding are often coupled, and the protein begins to fold from the N-terminus as it is being synthesized. It has been hypothesised that there could be kinetic coupling of the speed of translation and the folding, which means that an altered rate of synthesis can cause a possible misfolding of the protein. Testing this hypothesis will be impactful for protein misfolding diseases such as Alzheimer’s, Parkinson’s, Huntington’s etc., and also help in the study of the effect of synonymous, non-synonymous and rare codon changes on a protein. However, research works in this regard are far and few and none of them have been carried out in a homologous in vitro system. This project is an attempt to study the co-translational folding of Escherichia coli protein dihydro folate reductase (DHFR) using an E. coli reconstituted transcription/ translation system (RTTF) in vitro. The preparatory phase involves: preparation of UAG mutants of the DHFR DNA (for site-specific incorporation of fluorescent dyes), preparation of amber tRNAs which recognise the UAG codons, aminoacylation of the tRNAs and labelling the amino acids with fluorescent dyes. The experimental phase involves: incorporation of each of the fluorescent amino acids in the protein during in vitro synthesis in steady-state, observing incorporation of the same in stopped-flow spectrofluorimeter, attempting to observe fluorescent resonance energy transfer (FRET) between the two dyes due to co-translational folding. The preparatory and experimental phases were completed successfully, and it has been established that the amino acids with the fluorescent moieties can be incorporated site specifically in the mutant protein. The synthesis of the protein was observed using stopped-flow spectrometer for each of the fluorescent amino acids individually.  The synthesis of the mutants using two sets of dye pairs was also observed using a steady-state fluorimeter as well as stopped-flow spectrofluorimeter and the FRET between the two fluorophores was obtained. Although further experiments are required to fully validate and standardize this technique,  it will, even now,  aid in the study of the folding of proteins in a cell-free system.
188

Improving Support-vector machines with Hyperplane folding

Söyseth, Carl, Ekelund, Gustav January 2019 (has links)
Background. Hyperplane folding was introduced by Lars Lundberg et al. in Hyperplane folding increased the margin while suffering from a flaw, referred to asover-rotation in this thesis. The aim of this thesis is to introduce a new different technique thatwould not over-rotate data points. This novel technique is referred to as RubberBand folding in the thesis. The following research questions are addressed: 1) DoesRubber Band folding increases classification accuracy? 2) Does Rubber Band fold-ing increase the Margin? 3) How does Rubber Band folding effect execution time? Rubber Band folding was implemented and its result was compared toHyperplane folding and the Support-vector machine. This comparison was done byapplying Stratified ten-fold cross-validation on four data sets for research question1 & 2. Four folds were applied for both Hyperplane folding and Rubber Band fold-ing, as more folds can lead to over-fitting. While research question 3 used 15 folds,in order to see trends and is not affected by over-fitting. One BMI data set, wasartificially made for the initial Hyperplane folding paper. Another data set labeled patients with, or without a liver disorder. Another data set predicted if patients havebenign- or malign cancer cells. Finally, a data set predicted if a hepatitis patient isalive within five years.Results.Rubber Band folding achieved a higher classification accuracy when com-pared to Hyperplane folding in all data sets. Rubber Band folding increased theclassification in the BMI data set and cancer data set while the accuracy for Rub-ber Band folding decreased in liver and hepatitis data sets. Hyperplane folding’saccuracy decreased in all data sets.Both Rubber Band folding and Hyperplane folding increases the margin for alldata sets tested. Rubber Band folding achieved a margin higher than Hyperplanefolding’s in the BMI and Liver data sets. Execution time for both the classification ofdata points and the training time for the classifier increases linearly per fold. RubberBand folding has slower growth in classification time when compared to Hyperplanefolding. Rubber Band folding can increase the classification accuracy, in whichexact cases are unknown. It is howevered believed to be when the data is none-linearly seperable.Rubber Band folding increases the margin. When compared to Hyperplane fold-ing, Rubber Band folding can in some cases, achieve a higher increase in marginwhile in some cases Hyperplane folding achieves a higher margin.Both Hyperplane folding and Rubber Band folding increases training time andclassification time linearly. The difference between Hyperplane folding and RubberBand folding in training time was negligible while Rubber bands increase in classifi-cation time was lower. This was attributed to Rubber Band folding rotating fewerpoints after 15 folds.
189

Folding of the Prion Protein

Apetri, Constantin Adrian 31 March 2004 (has links)
No description available.
190

Computational studies of the folding patterns of small and medium-size polypeptides

Mokoena, Paul January 2010 (has links)
Submitted in partial fulfilment for the Degree of Doctor of Technology: Biotechnology, Durban University of Technology, 2010. / This study involved a series of molecular dynamics (MD) simulations applied to case studies of small and medium-size polypeptides to assess the thermodynamics of their folding characteristics. Peptide folding is a complex and vital phenomenon taking place in all living systems. Bioactive conformational structures of folded peptides need to be well characterized before using them in computer-aided drug design. The computational procedure was validated on the 10-residue long chignolin-like synthetic mini-protein (CLN025). For this peptide, replica exchange molecular dynamics (REMD) calculations were carried out in explicit and implicit solvents using the generalized Born (GB)/surface area (SA) approximation with different sets of force field parameters. Following this validation procedure, case studies of the folding conformations of peptides of different lengths including the 5-residue met-enkephalin, the 27-residue pituitary adenylate-activating polypeptide 27(PACAP27) and the 28-residue vasoactive intestinal peptide (VIP) were undertaken. The latter two peptides are multifunctional hormones that mediate diverse biological functions, such as the cell cycle, cardiac muscle relaxation, immune response, septic shock, bone metabolism, and endocrine function. Results obtained indicate that when explicit water, methanol and DMSO solvents were used, it appeared that methanol (MeOH) and dimethylsulphoxide (DMSO) afforded met-enkephalin the ability to form more intra-hydrogen bonds than water, producing type I and type III β-turn structures; thus enhancing the helical conformation of the peptide. MD trajectories of longer polypeptides (VIP and PACAP27) were also populated with type I and type III β-turns, which occurred consecutively; with α- and 310-helices occurring from the middle of each peptide towards the C-terminal. Characterization of implicit solvent results, reveal that these simulations have been able to reproduce the same type of conformers obtained by experimental NMR studies published in literature, which structurally resemble the native conformation of the bioactive peptides. These conformational structures will be applied as lead agents in computer-aided drug design. One of the major achievements of this study is the ability to optimize and validate the force field parameter sets to describe the thermodynamic properties of peptide systems in an unbiased manner, a non-trivial task for even the smallest of peptides. These findings re-affirm the notion that computational methods have matured enough to model dynamic biological phenomena such as peptide folding, a feat previously thought to be impossible.

Page generated in 0.0207 seconds