• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 180
  • 69
  • 47
  • 21
  • 14
  • 13
  • 13
  • 9
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 820
  • 168
  • 151
  • 109
  • 75
  • 65
  • 65
  • 56
  • 54
  • 48
  • 44
  • 44
  • 43
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

An effective method of stochastic simulation of complex large-scale transport processes in naturally fractured reservoirs

Hu, Yujie 25 April 2011 (has links)
Not available / text
142

Coarse scale simulation of tight gas reservoirs

El-Ahmady, Mohamed Hamed 30 September 2004 (has links)
It is common for field models of tight gas reservoirs to include several wells with hydraulic fractures. These hydraulic fractures can be very long, extending for more than a thousand feet. A hydraulic fracture width is usually no more than about 0.02 ft. The combination of the above factors leads to the conclusion that there is a need to model hydraulic fractures in coarse grid blocks for these field models since it may be impractical to simulate these models using fine grids. In this dissertation, a method was developed to simulate a reservoir model with a single hydraulic fracture that passes through several coarse gridblocks. This method was tested and a numerical error was quantified that occurs at early time due to the use of coarse grid blocks. In addition, in this work, rules were developed and tested on using uniform fine grids to simulate a reservoir model with a single hydraulic fracture. Results were compared with the results from simulations using non-uniform fine grids.
143

Gas condensate damage in hydraulically fractured wells

Adeyeye, Adedeji Ayoola 30 September 2004 (has links)
This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.
144

Untersuchung im Rahmen der Qualitätssicherung bei der Versorgung von Humeruskopffrakturen / Study in order of quality assurance for the treatment of fractures of the humeral head

Himmelmann, Tobias 18 November 2014 (has links)
No description available.
145

Genetic epidemiology of postmenopausal osteoporosis

Keen, Richard William January 2000 (has links)
No description available.
146

Temperature Prediction Model for Horizontal Well with Multiple Fractures in Shale Reservoir

Yoshida, Nozomu 03 October 2013 (has links)
Fracture diagnostics is a key technology for well performance prediction of a horizontal well in a shale reservoir. The combination of multiple fracture diagnostic techniques gives reliable results, and temperature data has potential to provide more reliability on the results. In this work, we show an application of a temperature prediction model for a horizontal well with multiple hydraulic fractures in order to investigate the possibility of evaluating reservoir and hydraulic fracture parameters using temperature data. The model consists of wellbore model and reservoir model. The wellbore model was formulated based on mass, momentum and energy balance. The reservoir flow model was solved by a numerical reservoir simulation, and the reservoir thermal model was formulated by transient energy balance equation considering viscous dissipation heating and temperature variation caused by fluid expansion besides heat conduction and convection. The reservoir flow and reservoir thermal model were coupled with the wellbore model to predict temperature distribution in a horizontal well considering boundary conditions at the contact of reservoir and wellbore. In the reservoir system, primary hydraulic fractures which are transverse to the horizontal well were modeled with thin grid cells explicitly, and the hydraulically-induced fracture network around the horizontal well was modeled as higher permeable zone to unstimulated matrix zone. The reservoir grids between two primary fractures were logarithmically spaced in order to capture transient flow behavior. We applied the model to synthetic examples: horizontal well with identical five fractures and with different five fractures. The results show two fundamental mechanisms: heat conduction between formation and wellbore fluid at non-perforated zone, and wellbore fluid mixing effect at each fracture. The synthetic example with identical fractures shows that fracture locations affect wellbore temperature distribution because of fluid mixing effect between reservoir inflow and wellbore fluid. And also, the synthetic example with different fractures shows that the fracture heterogeneity causes different magnitude of temperature change due to inflow variation per fracture. In addition, the model was applied to synthetic examples without network fracture region in order to find the effects by the network. It reveals that under constant rate condition, network fracture masks large temperature change due to small pressure change at the contact between fracture and formation, and that under constant BHP condition, network fracture augments temperature change with the increase of flow rate in wellbore and inflow rate from reservoir. Sensitivity studies were performed on temperature distribution to identify influential parameters out of the reservoir and hydraulic fracture parameters including reservoir porosity, reservoir permeability, fracture half-length, fracture height, fracture permeability, fracture porosity, fracture network parameters, and fracture interference between multiple clusters. In this work, in order to find contributions by a target fracture, temperature change sensitivity is evaluated. Single fracture case reveals that fracture permeability, network fracture parameters and fracture geometries are primary influential parameters on temperature change at the fracture location. And also, multiple fractures case shows that temperature change is augmented with the increase of fracture geometry and is decreased with the increase of fracture permeability. These results show the possibility of using temperature to determine these sensitive parameters, and also the quantified parameter sensitivities provide better understandings of the temperature behavior of horizontal well with multiple fractures.
147

Transient and Pseudosteady-State Productivity of Hydraulically Fractured Well

Lumban Gaol, Ardhi 2012 August 1900 (has links)
Numerical simulation method is used in this work to solve the problem of transient and pseudosteady-state flow of fluid in a rectangular reservoir with impermeable boundaries. Development and validation of the numerical solution for various well-fracture configurations are the main objectives of this research. The specific case of horizontal well intersected by multiple transverse fractures is the focus of the investigation. The solutions for different operating conditions, constant rate and constant pressure, are represented in the form of transient – peudosteady-state productivity indices. The numerical simulator is validated by comparing results to known analytical solution for radial flow, existing models of productivity for vertical well intersected by vertical fracture, and also with published tables of shape factors. Numerical simulation is a powerful tool to predict well performance. The complexities of well-fracture configurations can be modeled in a truly 3-dimensional system and the pressure and productivity responses for all of the flow regimes can be computed efficiently, enabling optimization of the well-fracture system.
148

Quality of life and femoral neck fractures /

Tidermark, Jan, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 6 uppsatser.
149

A finite element inverse analysis to assess functional improvement during the fracture healing process

Weis, Jared Anthony. January 2009 (has links)
Thesis (M. S. in Biomedical Engineering)--Vanderbilt University, Dec. 2009. / Title from title screen. Includes bibliographical references.
150

Comparison of texture classification methods to evaluate spongy bone texture in osteoporosis /

Bidesi, Anup Singh. January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 80-85). Also available on the Internet.

Page generated in 0.0291 seconds