51 |
Studies of free-radical reactions by electron spin resonance spectroscopyBuley, A. L. January 1964 (has links)
No description available.
|
52 |
Mathematical Modeling of Immuno-radioprotector Delivery System Using a Monoclonal AntibodyAlhassani, Maha January 2015 (has links)
Amifostine (WR-2721, delivered as Ethyol) is a radioprotector agent that reduces
the likelihood of early and/or late biological effects by eliminating free radical particles
during ionizing radiation fraction (radiotherapy). It activates in under normal tissues
conditions to reduce mutation and fraction in DNA. Among 4000 prodrug compounds,
amifostine is the only agent has been approved from the US Food and Drug
Administration in clinical purposes. The main effective mechanisms of amifostine are
based on scavenging for free radical, improving for DNA repair step and indication of
cellular hypoxia. In the same time, this drug is not widely used around the world for
different reasons mainly its high cost and toxicity level (lethal dose). Conjugating a
monoclonal antibody with amifostine by a suitable linker is a process of Antibody Drug
Conjugate producing immuno-radioprotector molecule hypothesis. Administrated
molecule is an approach of targeted delivery therapy that increases the dosage uptake into
particular area of treatment to minimize the dose distribution in non-targeted area in the
body.
In the present work, we proposed a three-compartment system model to simulate
the two-pore theory pathway of an immuno-radioprotector molecule when it is crossing
the physiological barriers. The model investigated its distribution and elimination in
porous media (with both large and small pores) within a pharmacokinetics
compartmented model approach.
|
53 |
Investigating the Interactions between Free Radicals and Supported Noble Metal Nanoparticles in Oxidation ReactionsCrites, Charles-Oneil January 2015 (has links)
This thesis studies the interaction between free radical species and supported noble metal nanoparticles (silver and gold) in the context of oxidation reactions. The peroxidation of cumene is the first reaction to be discussed and the difference in peroxidation product distribution using silver nanoparticles (AgNP) versus gold nanoparticles (AuNP) is examined. Specifically, cumyl alcohol is obtained as the major product obtained when using supported AuNP, whereas cumene hydroperoxide is favoured for AgNP. Such variations in product distribution are partially explained by the differences in the nanoparticle Fenton activity, where the TiO2 support was proposed to enhance such activity due to possible electron shuttling capabilities with the nanoparticle surface. Use of hydrotalcite as a support was found to minimize this characteristic, due to its insulator properties. The stability of hydroperoxide was tested in the presence of various others supports (activated carbon, Al2O3, ZnO, SiO2 and clays) with little success, with hydroperoxide exhibiting stability in the presence of HT. Using an oxygen uptake apparatus, the interaction of the cumyl peroxyl radical with the AuNP surface was demonstrated. Furthermore, this interaction promotes decomposition leading to the corresponding alkoxyl radical and subsequent hydrogen abstraction to form the observed cumyl alcohol product. The radical interaction with supported nanoparticles, and its reversibility appear different for gold and silver and accounts for a large part of the product distribution differences observed between AuNP and AgNP, as illustrated below.
The peroxidation of ethylbenzene and propylbenzene was studied and revealed the participation of a reactive surface oxygen species due to the decomposition of peroxyl radicals on the nanoparticle surface. The reactive oxygen species was found to be transient in nature in the case of AuNP . Furthermore, this surface species was found to be an important participant in hydrogen abstraction leading to peroxide product formation. Finally, supported nanoparticle catalyzed tetralin peroxidation was investigated to determine the influence of temperature on the peroxidation product distribution and how changes in the reaction temperature can effect the radical-nanoparticle surface interactions.
|
54 |
The Role of Cerium Redox State in the SOD Mimetic Activity of NanoceriaHeckert, Eric, Karakoti, Ajay S., Seal, Sudipta, Self, William T. 01 June 2008 (has links)
Cerium oxide nanoparticles (nanoceria) have recently been shown to protect cells against oxidative stress in both cell culture and animal models. Nanoceria has been shown to exhibit superoxide dismutase (SOD) activity using a ferricytochrome C assay, and this mimetic activity that has been postulated to be responsible for cellular protection by nanoceria. The nature of nanoceria's antioxidant properties, specifically what physical characteristics make nanoceria effective at scavenging superoxide anion, is poorly understood. In this study electron paramagnetic resonance (EPR) analysis confirms the reactivity of nanoceria as an SOD mimetic. X-ray photoelectron spectroscopy (XPS) and UV-visible analyses of nanoceria treated with hydrogen peroxide demonstrate that a decrease in the Ce 3+/4+ ratio correlates directly with a loss of SOD mimetic activity. These results strongly suggest that the surface oxidation state of nanoceria plays an integral role in the SOD mimetic activity of nanoceria and that ability of nanoceria to scavenge superoxide is directly related to cerium(III) concentrations at the surface of the particle.
|
55 |
Theoretical Studies of Atmospheric Water ComplexesPan, Xiong 01 January 1992 (has links)
Intermolecular complexes between H₂O and atmospheric species HO, HO₂, H₂O₂, O₃, NO and NO₂ have been studied by ab initio molecular orbital methods. The studies have been performed to the MP2 theory level by using 4-31G, 6-31G, D95, 6-31G**, D95**, 6-311G**, 6-311+G**, 6-311++G**, 6-311+G(2d,lp) and 6-311+G(2d,2p) basis sets. The geometries were fully optimized. The vibrational frequencies were calculated. The Basis Set Superposition Error (BSSE) were estimated. Finally, the binding energies of the complexes were predicted with other thermochemical properties. The binding energies of H₂O•HO, H₂O•HO₂, H₂O•H₂O₂, H₂O•O₃, H₂O•NO and H₂O•NO₂ are estimated to be 5.7±0.6, 8.9±1.0, 7.3±1.3, 1.8±0.2, 1.17 (no BSSE correction) and 2.98 (no BSSE correction) Kcal/Mol, respectively. The Kcq for dimerization to yield H₂O•HO, H₂O•HF, H₂O•HO₂, H₂O•H₂O and H₂O•H₂O₂ are estimated to be 0.11, 2.8, 3.3, 0.067 and 0.11 atm¯¹, respectively. The H₂O•HO, H₂O•HF, H₂O•HO₂, H₂O•H₂O and H₂O•H₂O₂ are quite strongly bonded complexes, while H₂O•O₃, H₂O•NO and H₂O•NO₂ are only weakly bonded complexes. The Kcq changes with temperature are discussed, and their importance in atmospheric chemistry are addressed.
|
56 |
Free Radical Polymerization of Styrene in Continuous Stirred Tank ReactorsDuerksen, John Hugo 08 1900 (has links)
<p> This dissertation describes an investigation into the free radical polymerization of styrene in continuous stirred tank reactors (CSTR's). The aim was to develop a steady state polymerization model which would accurately predict conversion and molecular weight distribution (MWD) up to high conversion. </p> <p> The dissertation is divided into three self-contained parts. Part I describes the testing and development of polymerization kinetics using a single CSTR. The single CSTR model is described. Theoretical and experimental
conversions and MWD's are compared and discussed. </p> <p> Part II describes the development of a model for a system of CSTR's. It is based upon the single CSTR model and the kinetics developed in Part I. Theoretical and experimental results for a three reactor system are compared and discussed. </p> <p> Part III describes the development of gel permeation chromatography (GPC) for measuring MWD. Molecular weight and resolution calibration data are presented and discussed. Four methods of chromatogram interpretation that correct for imperfect resolution are compared. </p> / Thesis / Doctor of Philosophy (PhD)
|
57 |
Computational Quantum Chemistry Studies of the Stabilities of Radical Adducts Formed During the Oxidation of Melatonin DerivativesHorne, James 01 December 2023 (has links) (PDF)
Melatonin is a natural antioxidant that has been investigated for properties as a potential spin trap to identify short-lived free radicals. Computational quantum chemistry studies have been performed for the oxidation of melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine. This research focused on modification of melatonin into derivatives and analyzing the change in total molecular energy from melatonin to its oxidation product, as well as the corresponding derivatives. Each of the molecular geometries were optimized at the DFT/B3LYP/6-31G(d), DFT/B3LYP/cc-pVXZ (X = D, T), HF/6-31G(d), HF/cc-PVXZ (X = D, T), MP2/6-31G(d), and MP2/cc-PVXZ (X = D, T) levels of theory. Single point energies were extrapolated to the complete basis set. The results demonstrated that some electron-withdrawing groups increased the total energy of the system. The electron-withdrawing functional group which lowered the total energy of the system was a peroxyl functional group, and this is believed to be due to overlapping constructive interference between molecular orbitals.
|
58 |
Transformation of the X-33 Strain of <i>Pichia pastoris</i> and the Small Scale Expression of the N103H Mutant Hen Egg White Lysozyme GeneSamalla, Praneeth 10 June 2015 (has links)
No description available.
|
59 |
Studies toward the synthesis of the C19 quassinoid polyandraneDonahue, Matthew G. 07 October 2005 (has links)
No description available.
|
60 |
Allenes as Free Radical Acceptors: An Approach to the PolyandranesMbogo, Grace K. January 2009 (has links)
No description available.
|
Page generated in 0.0204 seconds