161 |
Fotogenerace náboje v organických polovodičích / Photogeneration of Charge Carriers in Organic SemiconductorsHeinrichová, Patricie January 2015 (has links)
The interest in the detail knowledge about elementary electronic processes during photogeneration of charge carriers, which allow achieving higher efficiency of organic solar cells, grows with advent of the commercial organic solar cells production. The thesis is focused on study of photogeneration of charge carriers in organic semiconductors, especially in -conjugated polymer materials. First part of the thesis summarized state of the art in studies of photogeneration of charge carriers in polymer solar cells. Subsequent experimental and results part are focused on study of polymeric solar cells prepared from electron donor polymers MDMO-PPV, Tg-PPV, PCDTBT and PCBTDPP and electron acceptor derivates of fullerenes PC60BM and PC70BM. Results of the thesis are divided in tree main parts: 1) study of charge transfer between electron donor and electron acceptor materials by optical methods, 2) study of charge transfer between electron donor and electron acceptor materials by optoelectrical methods and 3) development of organic solar cells on flexible substrates. The last part is focused largely on deposition methods of active materials thin layer.
|
162 |
Die Berechnung von Struktur, Energetik und kernmagnetischen Abschirmungen von Fullerenen und ihren DerivatenHeine, Thomas 26 August 1999 (has links)
No description available.
|
163 |
Ab-initio molecular dynamics studies of laser- and collision-induced processes in multielectron diatomics, organic molecules and fullerenesHandt, Jan 18 October 2010 (has links)
This work presents applications of an ab-initio molecular dynamics method, the so-called nonadiabatic quantum molecular dynamics (NA-QMD), for various molecular systems with many electronic and nuclear degrees of freedom. Thereby, the nuclei will be treated classically and the electrons with time-dependent density functional theory (TD-DFT) in basis expansion. Depending on the actual system and physical process,
well suited basis sets for the Kohn-Sham orbitals has to be chosen. For the ionization process a novel absorber acting in the energy space as well as additional basis functions will be used depending on the laser frequency.
In the first part of the applications, a large variety of different laser-induced molecular processes will be investigated. This concerns, the orientation dependence of the ionization of multielectronic diatomics (N2, O2), the isomerization of organic molecules (N2H2) and the giant excitation of the breathing mode in fullerenes (C60).
In the second part, fullerene-fullerene collisions are investigated, for the first time in the whole range of relevant impact velocities concerning the vibrational and electronic energy transfer (\"stopping~power\").
For low energetic (adiabatic) collisions, it is surprisingly found, that a two-dimensional, phenomenological collision model can reproduce (even quantitatively) the basic features of fusion and scattering observed in the fully microscopic calculations as well as in the experiment.
For high energetic (nonadiabatic) collisions, the electronic and vibrational excitation regimes are predicted, leading to multifragmentation up to complete atomization.
|
164 |
Studies on Organic Solar Cells Composed of Fullerenes and Zinc-PhthalocyaninesPfützner, Steffen 30 January 2012 (has links)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to
injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61
3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67
3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70
3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73
3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77
3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81
3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85
4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88
4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89
4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90
4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90
4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91
4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99
4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101
5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103
5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103
5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107
5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116
5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119
5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121
5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124
5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128
6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137
6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137
6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140
6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148
6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152
6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155
6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158
7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61
3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67
3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70
3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73
3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77
3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81
3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85
4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88
4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89
4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90
4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90
4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91
4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99
4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101
5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103
5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103
5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107
5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116
5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119
5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121
5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124
5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128
6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137
6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137
6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140
6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148
6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152
6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155
6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158
7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
|
165 |
Effects of carbon nanotubes on airway epithelial cells and model lipid bilayers : proteomic and biophysical studiesLi, Pin January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 h exposure to 10 μg/mL and 100 ng/mL of two common carbon nanoparticles, singleand multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformatics analysis of proteins identified by LFQMS. Interestingly, after exposure to a high concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4
ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT, respectively, 231 proteins were the same.
Bioinformatic analyses found that the proteins common to both kinds of nanotubes are associated with the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation,
infectious disease, molecular transport and protein synthesis. The decrease in expression of the majority proteins suggests a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some
proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein
containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon
nanotube exposure. To examine the effect of nanotubes on the plasma membrane, we investigated the
interaction of short purified MWCNT with model lipid membranes using a planar bilayer workstation. Bilayer lipid membranes were synthesized using neutral 1, 2-diphytanoylsn-glycero-3-phosphocholine (DPhPC) in 1 M KCl. The ion channel model protein, Gramicidin A (gA), was incorporated into the bilayers and used to measure the effect of MWCNT on ion transport. The opening and closing of ion channels, amplitude of current, and open probability and lifetime of ion channels were measured and analyzed by Clampfit. The presence of an intermediate concentration of MWCNT (2 μg/ml) could be related to a statistically significant decrease of the open probability and lifetime of gA channels.
The proteomic studies revealed changes in response to CNT exposure. An analysis of the changes using multiple databases revealed alterations in pathways, which were
consistent with the physiological changes that were observed in cultured cells exposed to very low concentrations of CNT. The physiological changes included the break down of the barrier function and the inhibition of the mucocillary clearance, both of which could increase the risk of CNT’s toxicity to human health. The biophysical studies indicate MWCNTs have an effect on single channel kinetics of Gramicidin A model cation channel. These changes are consistent with the inhibitory effect of nanoparticles on hormone stimulated transepithelial ion flux, but additional experiments will be necessary to substantiate this correlation.
|
Page generated in 0.0215 seconds