1 |
The molecular pathology, genetic involvement and biochemical characteristics of fused in sarcoma (FUS) protein and chromosome 9p-linked frontotemporal lobar degenerationHu, Quan January 2012 (has links)
The fused in sarcoma (FUS) protein has been shown to be a significant disease protein in a subgroup of patients with frontotemporal lobar degeneration (FTLD). Nevertheless, the mechanism underlying FUS associated FTLD is only poorly understood. Recent research has identified a large hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72), reinforcing the association between C9orf72 and FTLD. Moreover, an unusual histopathological change has been observed within the granule cell layer of the cerebellum in chromosome 9p-linked frontotemporal dementia with motor neuron disease. Whether this type of cerebellar pathology is a pathological marker for chromosome 9p-linked families remains unknown. The purpose of this study was to genetically, neuropathologically and biochemically characterize FUS and C9orf72 in FTLD, and also to investigate the association between the cerebellar pathology and chromosome 9p-linked families. The genetic sequencing study searching for potential genetic factors of FUS in FTLD failed to detect any pathogenic mutations or variations. Immunohistochemical study for FUS pathology in FTLD provided strong evidence for FUS being the specific pathological protein in all forms of FTLD-FUS. Immunoblotting for FUS in FTLD detected one novel disease-associated FUS aggregate (~37 kDa) in the urea fraction of atypical FTLD with ubiquitinated inclusions (aFTLD-U) frontal cortical samples, suggesting this unique protein product might be more associated with disease than the full-length protein itself. Immunohistochemical study of C9orf72 in FTLD detected a 'synaptic' staining in CA sectors, as the most prominent histological feature identified. Immunoblotting for C9orf72 protein demonstrated no distinctive bands among different diagnostic groups, in frontal and cerebellar cortical regions. The present study also confirmed the presence of cerebellar p62 neuronal cytoplasmic inclusions (NCI) in a proportion of FTLD-TDP cases. Although most of these cases showed an autosomally dominant pattern of inheritance, not all of them shared a common C9orf72 haplotype, or mutation in C9orf72.Much work is still needed to investigate the underlying pathogenesis of FTLD-FUS. Attention should still be given to identifying possible genetic risk factors in FUS using a large series of FTLD samples and searching for other possible proteins within the FUS immunoreactive neuronal inclusions. Moreover, the target protein within the cerebellar p62 NCI remains unknown, but it is clear that it is not C9orf72 protein.
|
2 |
Characterization of Mechanisms for Suppressing Toxicity of ALS-Associated Protein FUSKebe, Aicha R. 29 August 2019 (has links)
No description available.
|
3 |
Estudo da proteína FUS em linhagens de células pluripotentes induzidas de uma família com esclerose lateral amiotrófica e mutação no gene FUS / FUS protein study using induced pluripotent stem cells from a family with amyotrophic lateral sclerosis and mutation at FUS geneOlávio, Thiago Rosa 15 June 2016 (has links)
A esclerose lateral amiotrófica (ELA) é uma doença neurodegenerativa, progressiva de início tardio que afeta principalmente os neurônios motores (NM). As causas que levam os NM à morte são variadas e ainda sendo investigadas. A descoberta de alterações genéticas como uma possível causa de ELA deu início à uma nova era na investigação desta afecção. Atualmente existem mais de 30 genes associados com a doença, entre eles o FUS, um gene que frequentemente aparece mutado em casos familiais da doença. A proteína FUS normalmente se localiza predominantemente no núcleo, mas na maioria dos casos de mutações na FUS relacionadas à ELA, ela aparece retida no citoplasma. O presente estudo traz um paciente de ELA (P) portando a mutação p.R521H no gene FUS e três de seus irmãos (dos quais um é portador da mutação e não apresnta sinais clínicos de ELA, e os outros dois não apresentam mutações no FUS) dos quais foram obtidas amostras de sangue e biópsia de pele. O DNA extraído das amostras de sangue, foi submetido ao sequenciamento do tipo Sanger para verificar a presença, ou ausência, da mutação R521H na FUS. A partir dos fibroblastos dos participantes, foram derivadas linhagens de células tronco pluripotentes induzidas (iPSC). As iPSC produzidas passaram por ensaios a fim de indicar o estado de pluripotência e de indiferenciação destas linhagens. Nós investigamos a posição da proteína FUS nas linhagens de iPSC e de fibroblastos e há evidências que, assim como descrito na literatura, a proteína FUS aparece retida no citoplasma das linhagens do paciente e de seu irmão portador da mutação. Desta forma, o presente estudo associa dois irmãos com quadros clínicos discordantes mas que apresentam a mesma mutação e sinais moleculares patológicos semelhantes. As linhagens de iPSC obtidas são um rico material para o uso em pesquisas futuras sobre a ELA / Amyotrophic lateral sclerosis (ALS) is a late onset, progressive, neurodegenerative disease that primarily affects motor neurons (MNs). The causes behind motor neuron death are diverse and still under investigation. The discovery of genetic alterations as possible causes of ALS initiated a new era for ALS research. There are currently over 30 genes associated with the disease, among which is FUS, one of the most frequently mutated in familial cases. The FUS protein is predominantly located in the nucleus, but in most of the ALS-related FUS mutations this protein is dislocated to the cytoplasm. The present work investigates the molecular aspects of a specific FUS mutation, p.R521H. An ALS patient (P) harboring the mutation and three siblings (of which one is a non-affected carrier and two present no mutations in FUS) were analyzed using blood samples and skin biopsies. We extracted DNA from blood samples and submitted it to Sanger sequencing for confirmation of the presence, or absence, of the R521H FUS mutation. The fibroblasts obtained from these biopsies were used for iPSC derivation. Assays were performed to confirm the undifferentiated state and pluripotency for the four strains obtained. We investigated the FUS location in these strains, and there is evidence for FUS retention in the cytoplasm of cells harboring the mutation (as seen in recent literature). Thus, this work associates two siblings with the same pathogenic mutation, showing the same molecular pathological signal but with discording clinical phenotypes. The iPSC strains obtained here are a valuable resource for further ALS investigation
|
4 |
Estudo da proteína FUS em linhagens de células pluripotentes induzidas de uma família com esclerose lateral amiotrófica e mutação no gene FUS / FUS protein study using induced pluripotent stem cells from a family with amyotrophic lateral sclerosis and mutation at FUS geneThiago Rosa Olávio 15 June 2016 (has links)
A esclerose lateral amiotrófica (ELA) é uma doença neurodegenerativa, progressiva de início tardio que afeta principalmente os neurônios motores (NM). As causas que levam os NM à morte são variadas e ainda sendo investigadas. A descoberta de alterações genéticas como uma possível causa de ELA deu início à uma nova era na investigação desta afecção. Atualmente existem mais de 30 genes associados com a doença, entre eles o FUS, um gene que frequentemente aparece mutado em casos familiais da doença. A proteína FUS normalmente se localiza predominantemente no núcleo, mas na maioria dos casos de mutações na FUS relacionadas à ELA, ela aparece retida no citoplasma. O presente estudo traz um paciente de ELA (P) portando a mutação p.R521H no gene FUS e três de seus irmãos (dos quais um é portador da mutação e não apresnta sinais clínicos de ELA, e os outros dois não apresentam mutações no FUS) dos quais foram obtidas amostras de sangue e biópsia de pele. O DNA extraído das amostras de sangue, foi submetido ao sequenciamento do tipo Sanger para verificar a presença, ou ausência, da mutação R521H na FUS. A partir dos fibroblastos dos participantes, foram derivadas linhagens de células tronco pluripotentes induzidas (iPSC). As iPSC produzidas passaram por ensaios a fim de indicar o estado de pluripotência e de indiferenciação destas linhagens. Nós investigamos a posição da proteína FUS nas linhagens de iPSC e de fibroblastos e há evidências que, assim como descrito na literatura, a proteína FUS aparece retida no citoplasma das linhagens do paciente e de seu irmão portador da mutação. Desta forma, o presente estudo associa dois irmãos com quadros clínicos discordantes mas que apresentam a mesma mutação e sinais moleculares patológicos semelhantes. As linhagens de iPSC obtidas são um rico material para o uso em pesquisas futuras sobre a ELA / Amyotrophic lateral sclerosis (ALS) is a late onset, progressive, neurodegenerative disease that primarily affects motor neurons (MNs). The causes behind motor neuron death are diverse and still under investigation. The discovery of genetic alterations as possible causes of ALS initiated a new era for ALS research. There are currently over 30 genes associated with the disease, among which is FUS, one of the most frequently mutated in familial cases. The FUS protein is predominantly located in the nucleus, but in most of the ALS-related FUS mutations this protein is dislocated to the cytoplasm. The present work investigates the molecular aspects of a specific FUS mutation, p.R521H. An ALS patient (P) harboring the mutation and three siblings (of which one is a non-affected carrier and two present no mutations in FUS) were analyzed using blood samples and skin biopsies. We extracted DNA from blood samples and submitted it to Sanger sequencing for confirmation of the presence, or absence, of the R521H FUS mutation. The fibroblasts obtained from these biopsies were used for iPSC derivation. Assays were performed to confirm the undifferentiated state and pluripotency for the four strains obtained. We investigated the FUS location in these strains, and there is evidence for FUS retention in the cytoplasm of cells harboring the mutation (as seen in recent literature). Thus, this work associates two siblings with the same pathogenic mutation, showing the same molecular pathological signal but with discording clinical phenotypes. The iPSC strains obtained here are a valuable resource for further ALS investigation
|
5 |
Fusão de imagens no domínio da frequência baseada em focoALBUQUERQUE, Hugo Rodrigues de 20 August 2013 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-10T19:14:48Z
No. of bitstreams: 2
DISSERTAÇÃO Hugo Albuquerque.pdf: 7422850 bytes, checksum: 3133c927702ab38bd7ee89b9c3f5cc73 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-10T19:43:36Z (GMT) No. of bitstreams: 2
DISSERTAÇÃO Hugo Albuquerque.pdf: 7422850 bytes, checksum: 3133c927702ab38bd7ee89b9c3f5cc73 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-10T19:43:36Z (GMT). No. of bitstreams: 2
DISSERTAÇÃO Hugo Albuquerque.pdf: 7422850 bytes, checksum: 3133c927702ab38bd7ee89b9c3f5cc73 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013-08-20 / A fus~ao de imagens tem-se destacado na area de processamento de imagens, atrav es da
ideia de combinar duas ou mais imagens que apresentem caracter sticas distintas (provenientes
de diferentes sensores) ou alguma degrada c~ao (regi~oes desfocadas, mal iluminadas,
com baixo contraste). O foco e uma propriedade intimamente relacionada com a qualidade
da imagem. Em algumas situa c~oes, n~ao e poss vel manter simultaneamente todas
as regi~oes da paisagem bem focadas. Uma alternativa e utilizar a fus~ao de imagens para
combinar os focos diferentes de uma foto em apenas uma imagem com todas as regi~oes
melhor focadas.
Este trabalho apresenta uma ideia de utilizar diferentes t ecnicas de fus~ao de imagens
em conjunto para compor o resultado nal. Para tanto, as imagens de entrada s~ao
divididas em blocos, nos quais s~ao aplicados os algoritmos de fus~ao escolhidos. Em
seguida, escolhe-se a t ecnica que atuou melhor em cada bloco, atrav es de uma m etrica
de qualidade de imagem (como a PSNR (Peak Signal to Noise Ratio)), formando um
mosaico com os melhores resultados.
Dois algoritmos existentes na literatura envolvendo a fus~ao de imagens no dom nio da
frequ^encia baseados em foco s~ao descritos: Contraste no dom nio da DCT (Transformada
Discreta de Cosseno) e Frequ^encia Espacial. Modi ca c~oes s~ao feitas em ambas as t ecnicas
a m de melhorar os crit erios de sele c~ao para cada bloco, por meio da de ni c~ao da escolha
de um bloco inteiro ou dos pixels (ou coe cientes) individualmente.
A qualidade da imagem nal e avaliada utilizando m etricas conhecidas, como a PSNR,
RMSE (Root Mean Square Error), SSIM (Structural Similarity), entre outras. Tanto para
as melhorias quanto para a combina c~ao de algoritmos, os resultados s~ao equivalentes
ou superiores quando comparados aos das t ecnicas originais. Em caso de igualdade da
qualidade, o algoritmo melhorado possui execu c~ao mais r apida que o original, justi cando
assim o seu uso.
O tempo de execu c~ao de cada algoritmo e avaliado, mostrando que as t ecnicas de
combina c~ao aumentam o tempo de processamento, pois os algoritmos s~ao executados
sequencialmente. Nesse caso, a utiliza c~ao de paralelismo pode acelerar a execu c~ao. Uma
vez que a combina c~ao adiciona um processamento extra, estudos de viabilidade podem ser
realizados para cada caso, a m de considerar a real necessidade do aumento da qualidade
da imagem fundida, em detrimento dos recursos a serem utilizados.
|
6 |
Kinome-wide RNAi Screening to Identify Kinases Involved in Post-translational Modification of FUSLiu, Serena E. B. January 2016 (has links)
Amyotrophic lateral sclerosis (ALS) is a devastating adult onset neurodegenerative
disorder characterized by the selective degeneration of upper and lower motor neurons.
Patients typically die from respiratory failures within 2-5 years after diagnosis. One of
the milestones in ALS research is the discovery Fused in Sarcoma (FUS), an ALS causative gene. FUS is an RNA/DNA-binding protein and predominantly resides in the nucleus.
Majority of the FUS mutations are located in the C-terminus and causing aberrant
misdistribution to the cytoplasm. Currently, only a few binding partners of FUS are
known, which makes it difficult to speculate on the function and interaction of the
protein. In this study, we conducted a kinome-wide RNAi screen to identify kinases that
affect the localization of FUS. A dual specificity protein kinase named CDC2-like kinase
(CLK1) from the screen was found to be responsible for in post-translational modification of
FUS and affects the localization of FUS in the nucleus. The identification of CLK1 as FUSmodifying kinase is consistent with roles ascribed to both in the binding and regulation of RNA.
|
7 |
Small Solutions to Big Problems: Design and Synthesis of Nanoparticles for Biomedical ApplicationsFergusson, Austin D. 13 February 2023 (has links)
Nanoparticles have the potential to revolutionize medicine, but many obstacles complicate the translation of nanoparticles from the bench to the clinic. A deeper understanding of nanoparticle synthesis parameters that influence nanoparticle size, drug loading, and surface chemistry is needed to accelerate the design of efficacious therapeutic nanoparticle systems. In this work, organic and inorganic nanoparticles were prepared with hydrodynamic diameters below 200 nm for applications in cancer treatment and immunology. Hydrophobic ion pairing was applied to enhance the loading capacity of drugs and peptides in polyester and polysaccharide nanoparticles systems. Polyester nanoparticles were successfully functionalized with streptavidin-Cy3, interferon gamma (IFN-γ), and CX3CL1. Poly(methacrylic acid), chitosan, and polyinosinic-polycytidylic acid (poly(I:C)) were successfully adsorbed to the surfaces of nanoparticles to enhance particle stability and targeting. Iron-based coupling media capable of eliminating ~ 90% of the water signal from an acoustic coupling bath during gradient echo magnetic resonance imaging (MRI) thermometry was successfully designed using magnetic iron oxide nanoparticles to improve the clinical efficacy of MRI-guided focused ultrasound surgery (MRI-FUS). While the critical nanoparticle design criteria may change depending on the biomedical application, fundamental concepts of nanoparticle design and synthesis can be applied across applications. The projects presented here help to bridge the knowledge gap regarding the use of flash nanoprecipitation (FNP) for nanoparticle synthesis. FNP is a scalable nanoparticle fabrication method that produces small, well-defined nanoparticle populations through rapid, turbulent mixing of multiple solvent streams. This work elucidates nanoparticle design concepts that can be applied across a wide variety of biomedical applications. / Doctor of Philosophy / Cancer remains a critical public health issue worldwide because many promising therapies never make it from the lab into the hospital. Many chemotherapeutic drugs are hindered by poor solubility and serious, undesirable side effects. In the past few decades, new production techniques have been developed to create carriers for these drugs to help overcome these obstacles. These carriers can be made from a variety of materials including metals and biodegradable polymers. In fact, it is even possible to create "smart" carriers that react to their environment to travel within the body or release the drugs they contain. Understanding how to design these carriers for different biomedical applications is critical. This work shows how carriers made from metal or polymer can be designed to exhibit desirable characteristics for use in biomedical applications ranging from vaccines to cancer treatment. Various ways to modify the surfaces of these carriers to tailor them for different applications are presented. This work provides valuable information that can help drive the next generation of biomedical innovation.
|
8 |
Rôle du muscle squelettique dans la Sclérose Latérale Amyotrophique : apport de modèles transgéniques conditionnels / Role of skeletal muscle in Amyotrophic Lateral SclerosisPicchiarelli, Gina 13 September 2018 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative dont les premiers symptômes apparaissent généralement vers 60 ans. Elle affecte sélectivement le système moteur et provoque une paralysie progressive amenant au décès du patient par défaillance respiratoire en quelques années. À ce jour, il n’existe aucun traitement curatif, d’où la nécessité de comprendre la physiopathologie de la SLA. Bien que de nombreuses altérations dans le muscle aient été mises en évidence, sa contribution dans la SLA reste à définir. Nous avons montré que FUS est enrichi dans les noyaux sous-synaptiques de façon dépendante de l’innervation. De plus, FUS se lie au promoteur des récepteurs de l’acétylcholine et induit leur transcription de façon dépendante d’ERM. Le mutant FUS, quant à lui, est enrichi dans les noyaux extra-synaptiques et entraîne une toxicité musculaire responsable de l’altération de la jonction neuromusculaire (JNM). Au-delà de la JNM, FUS active MEF2A, de façon dépendante de PRMT1 afin de réguler les fonctions mitochondriales et la différenciation musculaire. La toxicité musculaire de FUS joue donc un rôle clé dans la physiopathologie de la SLA. / Amyotrophic lateral sclerosis is a neurodegenerative whose first symptoms generally appear around age 60. It is characterized by progressive motor neuron degeneration, paralysis and leading to death due to respiratory failure in a few years. Currently, there is no cure so the understanding of ALS physiopathology is necessary. Although many alterations in the muscle have been highlighted, its contribution in ALS remains to be defined. We showed that FUS is enriched in subsynaptic nuclei and this enrichment depended on innervation. Besides, FUS binds directly acetylcholine receptors (AchR) promoter and is required for Ermdependent induction of AChR expression. Conversely, mutant FUS is enriched on extra-synaptic nuclei and induce muscle intrinsic toxicity responsible for neuromuscular junction (NMJ) alteration. Beyond NMJ, FUS is required for muscle mitochondrial function and muscle differentiation through PRMT1-dependent MEF2A activation. Thus, FUS muscular toxicity plays a key role in the ALS physiopathology.
|
9 |
Troncation conditionnelle de la protéine FUS chez la souris : un nouveau modèle animal du continuum sclérose latérale amyotrophique/démence fronto-temporale / Conditional truncation of the FUS protein in mice : a new animal model of the ALS/FTD continuumScekic-Zahirovic, Jelena 11 January 2016 (has links)
La sclérose latérale amyotrophique (SLA) et la démence fronto-temporale (DFT) sont deux maladies qui constituent un continuum clinico-pathologique. La mutation de FUS, une protéine nucléaire à fonctions multiples, provoque des cas familaux de SLA, et ces mutations provoquent une redistribution sub-cellulaire de FUS, du noyau vers le cytoplasme. Certains cas de DFT présentent une telles distribution anormale en l’absence de mutations de FUS. Il n’est pas connu si la maladie est provoquée par une perte de la fonction nucléaire de FUS et/ou un gain de fonction cytoplasmique.Nous avons généré et caractérisé une lignée de souris exprimant une forme cytoplasmique de FUS (Fus-ΔNLS). La localisation exclusive de FUS dans le cytoplasme provoque la mort des motoneurones via un gain de fonction dans les motoneurones eux-mêmes. Une localisation cytoplasmique partielle de FUS est suffisante pour développer un phénotype de la SLA et de DFT. Les mécanismes élucidés permettront de comprendre les bases des SLA/DFT. / Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTLD) are now considered as a unique clinicopathological spectrum referred to as ALS/FTLD. Cytoplasmic aggregation of the physiologically nuclear FUS protein is a hallmark feature of a subset of ALS/FTLD. It remains unknonwn whether the critical pathogenic event relies on a loss of FUS normal nuclear functions, a toxic gain of function of FUS in the cytoplasm, or a combination of both.To answer this question we have generated a conditional mouse model expressing truncated FUS without nuclear localization signal - FusΔNLS. Our data showed that complete cytoplasmic mislocalization of truncated FUS protein within spinal motor neurons is a major determinant of motor neuron degeneration via toxic gain of function. A partial mislocalization of truncated FUS protein was sufficient to trigger key features of ALS and of FTLD.These studies allowed the elucidation of mechanisms underlying FUS role in ALS/FTLD, and will hopefully lead to development of therapies for these devastating diseases.
|
10 |
Mechanisms of Axonal Transport Defects in ALSSeifert, Anne 21 May 2021 (has links)
Neurodegenerative diseases have become one of the most common causes of death worldwide over the last couple of decades, with increasing tendency. Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting specifically spinal (lower) and cortical (upper) motor neurons in the spinal cord and brainstem, respectively. It is usually a late onset disorder (average age of onset in Germany is 61 years) and leads to death within 2-5 years after symptoms onset due to respiratory failure. To date, there is no cure for ALS and only two drugs have been approved for its treatment, which prolong the lifespan for up to six months or slow down disease progression in a subpopulation of patients. About 90 % of ALS cases are sporadic, while about 10 % are familial and hence caused by mutations in specific genes, among them fused in sarcoma (FUS), a DNA- and RNA-binding protein. Mutations in FUS account for roughly 5 % of familial cases and occur predominantly in its nuclear localization sequence (NLS), such as the FUS-P525L mutation. Neurons expressing this variant display a strong cytoplasmic mislocalization of FUS and hence a loss of its nuclear function. Among other pathological events, defects in axonal transport along microtubules have been observed early in disease progression in several models of FUS-ALS, indicating its role as a major hallmark of the disease. However, the mechanism of how transport is impaired within these neurons remains unknown to date. This study aimed at investigating two possible mechanisms how the FUS-P525L mutant variant affects microtubule-based axonal transport. First, it was analyzed whether FUS directly interacts with microtubules or motors and if the mislocalized, mutant variant alters this interaction. Secondly, cytoplasmic mislocalized FUS-P525L can no longer fulfil its regular role in the splicing of pre-mRNAs, among them the mRNA coding for the microtubule-associated protein tau. This reportedly leads to an increased ratio of translated tau isoforms containing four microtubule binding repeats (4R) to those containing three repeats (3R). 4R tau isoforms are known to have a stronger binding affinity towards microtubules and may hence impair transport more severely by acting as a roadblock for motor proteins. Towards this end, this study investigated whether an increase in 4R:3R tau isoform ratio is sufficient to impair microtubule based transport. Axonal transport was reconstituted in vitro using a kinesin-1-dependent microtubule gliding assays, in which microtubules are propelled by surface-immobilized kinesin-1 motors. The assay was modified and optimized to operate sensitively and robust in the presence of complex solutions such as whole cell lysates and the microtubule gliding velocity analyzed as a measure for motility of the underlying motors. To determine the direct interaction of FUS variants with kinesin-1 or microtubules, recombinant human wildtype FUS-GFP and FUS-P525L-GFP was added to the assay. In addition, ALS patient-specific induced pluripotent stem cells (iPSCs) expressing the same FUS variants were differentiated towards spinal motor neurons and their cell lysates applied to this assay in order to determine whether FUS variants need endogenous adaptors or interaction partners to interfere with kinesin-1 motility on microtubules. Further, to investigate the interference of tau isoforms with kinesin-1 motility, recombinant human 2N3R tau-GFP and 2N4R tau-mScarlet was purified from insect cells and added to the modified kinesin-1-dependent microtubule gliding assay, either individually or combined at different ratios. In addition, the binding of these tau variants to microtubules was assessed. The kinesin-1-dependent microtubule gliding assays was modified to operate sensitively and robustly in the presence of β-glycerophosphate (to inhibit endogenous phosphatases in whole cell lysates), and methylcellulose (to prevent microtubule detachment from kinesin-1 motors due to presence of β-glycerophosphate). Under these conditions, neither recombinant human FUS-GFP nor endogenous FUS-GFP variants in lysates of spinal motor neurons bound to microtubules or interfered with kinesin-1 motility. In contrast, both tau isoforms used in the present study bound to microtubules and impaired kinesin-1 motility, while 2N4R tau-mScarlet was a much more potent inhibitor of microtubule gliding and displayed a 20-fold stronger binding affinity to microtubules compared to 2N3R tau-GFP. Interestingly, increasing ratios of 4R:3R tau isoforms impaired kinesin-1-dependent microtubule gliding. In addition, the presence of 2N4R tau-mScarlet strongly prevented 2N3R tau-GFP from binding to microtubules. This study provides evidence that neither wildtype FUS nor the FUS-P525L variant directly interfere with axonal transport by interacting with kinesin-1 motors or microtubules. Further, the present data suggests that neither FUS variant impedes kinesin-1 motility on microtubules by interacting with endogenous adaptor proteins present in cell lysates of iPSC-derived spinal motor neurons. Therefore, it is proposed that axonal transport defects are not directly caused by interaction of cytoplasmic mislocalized FUS with the motors or microtubules, but rather arise as a consequence of other pathological events triggered by mutant FUS variants. In particular, this study demonstrates that an increased ratio of 4R:3R tau isoforms is sufficient to impair kinesin-1 motility on microtubules due to increased decoration of microtubules with 4R tau isoforms, preventing 3R tau isoforms from binding to microtubules. This strongly suggests that an increased ratio of 4R:3R tau isoforms, since FUS no longer regulates splicing of tau pre-mRNA upon its cytoplasmic mislocalization, may be sufficient to cause or contribute to the axonal transport defects observed early in FUS-ALS pathology. / Neurodegenerative Erkrankungen sind in den letzten Jahrzehnten mit zunehmender Tendenz zu einer der häufigsten Todesursachen weltweit geworden. Amyotrophe Lateralsklerose (ALS) ist die häufigste neurodegenerative Erkrankung, die spezifisch spinale (untere) und kortikale (obere) Motoneuronen im Rückenmark bzw. im Hirnstamm betrifft. Es handelt sich in der Regel um eine spät einsetzende Krankheit (das mittlere Erkrankungsalter in Deutschland beträgt 61 Jahre) und führt innerhalb von 2-5 Jahren nach Auftreten der Symptome zum Tod aufgrund von Atemversagen. Bisher gibt es keine Heilung für ALS und es wurden nur zwei Medikamente für die Behandlung zugelassen, die die Lebensdauer um bis zu sechs Monate verlängern oder das Fortschreiten der Krankheit bei einer Subpopulation von Patienten verlangsamen. Ungefähr 90% der ALS-Fälle sind sporadisch, während ungefähr 10% familiär sind und daher durch Mutationen in bestimmten Genen verursacht werden, darunter fused in sarcoma (FUS), einem DNA- und RNA-bindenden Protein. Mutationen in FUS machen etwa 5% der familiären Fälle aus und treten überwiegend in der Kernlokalisierungssequenz (NLS) auf, wie beispielsweise die FUS-P525L Mutation. Neuronen, die diese Mutante exprimieren, zeigen eine starke zytoplasmatische Fehllokalisierung von FUS und damit einen Verlust seiner Funktionen im Zellkern. Neben anderen pathologischen Ereignissen wurden in mehreren FUS-ALS Modellsystemen Defekte im Mikrotubuli-basierenden axonalen Transport früh im Krankheitsverlauf beobachtet, was auf seine Rolle als eines der Hauptmerkmale dieser Krankheit hindeutet. Der Mechanismus, wie der Transport innerhalb dieser Neuronen beeinträchtigt wird, ist jedoch bis heute unbekannt. Ziel dieser Studie ist es, zwei mögliche Mechanismen zu untersuchen, wie das mutierte FUS-P525L Protein den axonalen Transport entlang von Mikrotubuli beeinflusst. Zunächst wurde analysiert, ob FUS direkt mit Mikrotubuli oder Motorproteinen interagiert und ob zytoplasmatische fehllokalisierte FUS-P525L Protein diese Interaktion verändert. Ferner kann zytoplasmatische fehllokalisiertes FUS-P525L seine reguläre Rolle beim Spleißen von Prä-mRNAs nicht mehr erfüllen, darunter die mRNA, die für das mit Mikrotubuli-assoziierte Protein Tau kodiert. Dies führt zu einem erhöhten Verhältnis von translatierten Tau-Isoformen, die vier Mikrotubuli-Bindestellen (4R) enthalten, zu solchen mit drei Bindestellen (3R). Es ist bekannt, dass 4R-Tau-Isoformen eine stärkere Bindungsaffinität zu Mikrotubuli im Vergleich zu 3R-Tau-Isoformen aufweisen und daher den Transport stärker beeinträchtigen können, indem sie als Hindernis für Motorproteine agieren. In dieser Studie wurde daher untersucht, ob eine Erhöhung des Verhältnisses von 4R:3R-Tau-Isoform ausreicht, um den Mikrotubuli-basierenden Transport zu beeinträchtigen. Der axonale Transport wurde in vitro unter Verwendung eines Kinesin-1-gestuerten Mikrotubuli Motilitätsassay rekonstruiert, bei welchem Mikrotubuli von darunterliegenden oberflächenimmobilisierte Kinesin-1 Motorproteinen transportiert werden, also über die Oberfläche gleiten. Der Assay wurde modifiziert und optimiert, um in Gegenwart komplexer Lösungen wie Ganzzelllysaten sensitiv und robust zu funktionieren, und die Gleitgeschwindigkeit der Mikrotubuli wurde als Maß für die Motilität der darunterliegenden Motoren analysiert. Um die direkte Wechselwirkung von FUS-Varianten mit Kinesin-1 Motorproteinen oder Mikrotubuli zu bestimmen, wurde dem Assay rekombinantes menschliches Wildtyp-FUS-GFP und FUS-P525L-GFP hinzugegeben. Zusätzlich wurden ALS-patientenspezifische, induzierte pluripotente Stammzellen (iPSCs), welche dieselben FUS-Varianten exprimieren, zu spinalen Motoneuronen differenziert und ihre Zelllysate in diesem Assay angewendet, um zu bestimmen, ob FUS-Varianten endogene Adapter oder Interaktionspartner für die Interaction mit Kinesin-1 oder Mikrotubuli benötigen. Um den Einfluss von Tau-Isoformen auf die Kinesin-1 Motilität zu untersuchen, wurde rekombinantes menschliches 2N3R Tau-GFP und 2N4R Tau-mScarlet aus Insektenzellen aufgereinigt und dem modifizierten Kinesin-1-gesteuerten Mikrotubuli Motilitätsassay entweder einzeln oder in unterschiedlichen Verhältnissen kombiniert hinzugegeben. Zusätzlich wurde die Bindung dieser Tau-Varianten an Mikrotubuli analysiert. Der Kinesin-1-gesteuerte Mikrotubuli Motilitätsassay wurden so modifiziert, dass er in Gegenwart von β-Glycerophosphat (zur Hemmung endogener Phosphatasen in Ganzzelllysaten) und Methylcellulose (zur Verhinderung der Ablösung von Mikrotubuli von Kinesin-1 Motoren aufgrund von β-Glycerophosphat) empfindlich und robust funktioniert. Unter diesen Bedingungen zeigten weder rekombinantes menschliches FUS-GFP noch endogene FUS-GFP-Varianten in Lysaten von spinalen Motoneuronen eine Wechselwirkung mit Mikrotubuli und beeinträchtigten auch nicht die Kinesin-1 Motilität. Im Gegensatz dazu banden beide in der vorliegenden Studie verwendeten Tau-Isoformen an Mikrotubuli und beeinträchtigten die Kinesin-1-Motilität, wobei 2N4R Tau-mScarlet das Gleiten von Mikrotubuli viel stärkerer beeinträchtigte und eine 20-fach stärkere Bindungsaffinität zu Mikrotubuli im Vergleich zu 2N3R Tau-GFP zeigte. Ferner beeinträchtigten steigende Verhältnisse von 4R:3R Tau-Isoformen über Kinesin-1 gleitende Mikrotubuli, während die Präsenz von 2N4R Tau-mScarlet die Bindung von 2N3R Tau-GFP an Mikrotubuli stark verminderte. Diese Studie liefert Hinweise darauf, dass weder Wildtyp-FUS noch die FUS P525L-Variante den axonalen Transport direkt beeinflussen, da sie nicht mit Kinesin-1 Motorproteinen oder Mikrotubuli interagieren. Ferner legen die vorliegenden Daten nahe, dass keine der FUS-Varianten die Kinesin-1 Motilität auf Mikrotubuli durch Wechselwirkung mit endogenen Adapterproteinen behindert, die in Zelllysaten von iPSC-differenzierte spinalen Motoneuronen vorhanden sind. Dies legt nahe, dass axonale Transportdefekte nicht durch direkte Wechselwirkung von zytoplasmatisch fehllokalisiertem FUS Protein mit Motorproteinen oder Mikrotubuli verursacht werden, sondern als Folge anderer pathologischer Ereignisse auftreten, die durch mutierte FUS-Varianten entstehen. Insbesondere zeigt diese Studie, dass ein erhöhtes Verhältnis von 4R:3R Tau-Isoformen ausreicht, um die Kinesin-1 Motilität auf Mikrotubuli zu behindern. Dies geschieht vermutlich aufgrund der erhöhten Bindung von 4R Tau-Isoformen an Mikrotubuli, weil dadurch die Bindung von 3R Tau-Isoformen an Mikrotubuli verhindert wird. Dies deutet stark darauf hin, dass ein erhöhtes Verhältnis von 4R:3R Tau-Isoformen, verursacht durch die fehlende regulatorische Beteiligung von FUS am Spleißen von Tau-Prä-mRNA aufgrund der zytoplasmatischen Fehllokalisation von FUS, wahrscheinlich zu den axonalen Transportdefekten beiträgt, die früh in der FUS-ALS-Pathologie beobachtet wurden.
|
Page generated in 0.0319 seconds