Spelling suggestions: "subject:"fabrypérot cavity"" "subject:"fabryperot cavity""
1 |
Surface-normal multiple quantum well electroabsorption modulators : for optical signal processing and asymmetric free-space communicationJunique, Stéphane January 2007 (has links)
Electroabsorption is the physical phenomenon by which the absorption of light in a medium can be controlled by applying an electric field. The Quantum–Confined Stark Effect, which makes the absorption band–edge in quantum wells very field–dependent, together with the strong absorption peak provided by excitons, are the physical foundations for the success of electroabsorption modulators based on quantum well structures in telecommunication networks. This thesis describes the design and fabrication of surface–normal electroabsorption modulation devices. The techniques needed to understand the design and fabrication of surface–normal multiple quantum well optical modulators are introduced, as are the various characterisation techniques used during and after the fabrication. Devices for several types of applications have been designed, fabricated, characterised and in some cases integrated into optical systems: – Two–dimensional arrays of 128´128 pixel amplitude modulators grown on GaAs substrates have been fabricated and characterised. Speeds of up to 11700 frames per second were demonstrated, limited by the output electronics of the computer interface. – Large–area modulators grown on GaAs substrates for free–space optical communication were developed, with an active area of 2cm2 and a modulation speed of several megahertz. Contrast ratios up to 5:1 on full modulator areas were measured. Problems limiting the yield and modulation speed of such devices have been studied, and solutions to overcome them have been demonstrated. – Large–area devices grown on InP substrates for free–space optical communication have been developed. Contrast ratios of up to 2:1 for transmissive types have been demonstrated. – Devices consisting of two rows of pixels, grown on GaAs substrates, with an active area of 22mm´5mm, divided into 64 or 128 pixels per row have been developed. These amplitude modulation devices were designed for optical signal processing applications. – One variant of these optical signal processing devices was also characterised as a ternary, binary amplitude and binary phase modulator array. – The use of GaAs multiple quantum well optical modulators in a free–space optical retro–communication system has been studied. An opto–mechanical design for a modulating retro–reflector is described, allowing a large field of view in one direction using reflecting, resonant–cavity modulators for high contrast ratios. / QC 20100802
|
2 |
Strong light-molecule coupling : routes to new hybrid materials / Couplage fort lumière-matière et les conséquences pour les matériaux moléculairesWang, Shaojun 11 September 2015 (has links)
Durant les 15 dernières années, le couplage fort lumière-matière avec des matériaux organiques a attiré un intérêt croissant, notamment à cause des valeurs extrêmes que peut atteindre l'écart énergétique entre les modes couplés dans ces systèmes. Ces modes couplés sont des hybrides lumière-matière, aussi appelés états polaritons et notés habituellement P+ et P-. La valeur de I' écart énergétique entre les modes couplés, également appelé énergie de Rabi-splitting, est provoqué par une transition efficace de dipôle moments entre des molécules et aussi par des cavités ou des plasmons en surface de petits volumes en mode de micro-Fabry-Pérot métalliques (FP) qui sont utilisés dans ces études. Rabi-splittings - 1eV représente souvent une fraction importante de l'énergie de transition électronique, dans ce cas, le système est appelé dans le régime de couplage ultra-forte. Dans ce régime, la physico-chimie des molécules ou des propriétés des matériaux du système couplé peuvent être modifié. En effet, d'effet a déjà été montré sur les voies de relaxation dans le système couplé, les taux de réactions photochimiques, le travail d'extraction et de la conductivité des semi-conducteurs organiques dans l'obscurité, entre autres choses. Une étude récente a pu montrer que l'énergie de l'état non-excité dans une étude thermodynamique peut également être décalée dans le régime de couplage ultra-fort. De plus, le couplage fort ne se limite pas à des transitions électroniques, mais peut aussi être utilisé pour perturber les vibrations de l'état non-excité de molécules dans la région infrarouge. Tous ces résultats montrent que le couplage fort en lumière-molécule a beaucoup de potentiel pour le matériel et la science moléculaire et mérite donc une étude plus approfondie. / Over the past 15 years, light-matter strong coupling involving organic materials has been of increasing interest due to the very large energy splitting such systems exhibit between the two hybrid light-matter states, also known as the polaritonic states typically denoted P+ and P-. The large energy splitting, so-called Rabi splitting, is the result of the high transition dipole moments of the molecules and the small mode volumes of micro-metallic Fabry-Pérot (FP) cavities or surface plasmons used in these studies. Rabi-splittings -1 eV have been observed, often representing a significant fraction of the electronic transition energy in which case the system is said to be in the ultra-strong coupling regime. ln this regime the physical chemistry of molecules or the properties of materials of the coupied system should be modified. lndeed, it has already been shown to affect the relaxation pathways in the coupled system, the rates of photochemical reactions, thework-function and conductivity of organic-semiconductors in the dark, among other things. A recent thermodynamic study demonstrated that the ground state energy can also be shifted in theultra-strong coupling regime. Moreover, the strong coupling is not limited to electronic transitions, but also can be used to perturb the ground-state vibrations of molecules in the infrared region. Ali these results suggest that light-molecule strong coupling has much potential for material and molecular science and therefore merits further study.
|
3 |
Étude, développement et caractérisation des miroirs des interféromètres laser de 2ème génération dédiés à la détection des ondes gravitationnelles / Design, development and characterization of mirrors of the 2nd generation laser interferometers devoted to gravitational waves detectionStraniero, Nicolas 11 December 2015 (has links)
En cette fin d'année 2015, la construction de la 2e génération de détecteurs d'ondes gravitationnelles s'achève. Il s'agit des grands interféromètres de Michelson, dont les bras mesurent 3 km de long (Advanced Virgo) et 4 km de long (Advanced LIGO). Les ondes gravitationnelles, prédites par Einstein en 1916 dans sa théorie de la Relativité Générale n'ont pas été détectées de façon directe par la 1ère génération d'interféromètres. Mais aujourd'hui, la sensibilité a été augmentée d'un ordre de grandeur et le 100ème anniversaire de la théorie d'Einstein pourrait bien ouvrir officiellement l'ère de l'astronomie gravitationnelle. Si la sensibilité des nouveaux interféromètres est désormais exceptionnelle, c'est grâce aux avancées techniques et technologiques, et notamment grâce aux nouveaux miroirs des cavités Fabry-Pérot installés dans les bras de l'interféromètre. Cette thèse présente la conception, le développement et la caractérisation de ses miroirs aux qualités exceptionnelles. Elle s'intéresse aux pertes de lumière diffusée dans les cavités, pertes de diffusion générées par l'état de surface des miroirs et par les défauts d'uniformité des dépôts des couches minces à haute réflectivité. En étudiant la planéité des surfaces, nous verrons comment les modifications techniques du procédé de dépôt IBS ont permis d'améliorer la courbure et la planéité des surfaces. Nous verrons comment nous avons caractérisé ces surfaces avec l'interféromètre de Fizeau à décalage de longueur d'ondes. Nous montrerons enfin comment nous avons atteint les spécifications prévues lors de la conception des miroirs, diminuant les pertes de lumière diffusée dans les cavités Fabry-Pérot à un niveau encore inégalé de seulement quelques dizaines de ppm / In the year of 2015 the construction of the 2nd generation of detectors devoted to gravitational waves is going to be completed. These are large laser Michelson interferometers with arm respectively 3 km (Advanced Virgo) and 4 km (Advanced LIGO) in length. The gravitational waves, predicted by Einstein in 1916 within his theory of general relativity, have not been observed by the first generation of detectors. However, interferometers are now on the way of being ten times more sensitive than before, and so, on the 100th anniversary of the establishment of general relativity, the era of gravitational wave astronomy can start. If laser interferometer will be able to reach unprecedented sensitivity, it is thanks to new technological developments. In particular the new state of the art mirrors installed in the interferometer arms have exceptional performances. This thesis details the design, the development and the characterization of these remarkable large mirrors. My work will deal with the cavity optical loss due to the diffused light itself linked to the mirrors surface quality and to the high reflectivity coating uniformity. By studying the surface flatness, we will understand how it could be influenced by the deposition technique implemented in the coating machine. We will see also how to measure the mirror surfaces by wavelength shifting Fizeau interferometer. Finally, we will detail how we proceeded in order to reach the tight specifications for the mirrors, with in the end only tens of ppm for the cavity round trip losses
|
4 |
Optofluidique : études expérimentales, théoriques et de modélisation / Optofluidics : experimental, theoretical studies and modelingAli Aboulela Gaber, Noha 11 September 2014 (has links)
Ce travail porte sur l'étude de propriétés optiques des fluides à échelle micrométrique. A cet effet, nous avons conçu, réalisé et étudié différents types de micro-résonateurs optofluidiques, sous forme de laboratoires sur puce. Notre analyse est fondée sur la modélisation analytique et numérique, ainsi que sur des mesures expérimentales menées sur des micro-cavités optiques; nous utilisons l'une d'entre elles pour des applications de réfractométrie de fluides homogènes et de fluides complexes ainsi que pour la localisation par piégeage optique de microparticules solides. Nous nous sommes d'abord concentrés sur l'étude d'une nouvelle forme de micro-cavité Fabry-Pérot basée sur des miroirs courbes entre lesquels est inséré un tube capillaire permettant la circulation d'une solution liquide. Les résultats expérimentaux ont démontré la capacité de ce dispositif à être utilisé comme réfractomètre avec un seuil de détection de 1,9 × 10-4 RIU pour des liquides homogènes. De plus, pour un liquide contenant des particules solides, la capacité de contrôler la position des microparticules, par des effets de piégeage optique ou de liaison optique, a été démontrée avec succès. Dans un second temps, un résonateur optique est formé simplement à partir d'une goutte de liquide disposée sur une surface super-hydrophobe. La forme quasi-sphérique résultante est propice à des modes de galerie. Il est démontré que, jusqu'à des tailles de gouttelettes millimétriques, la technique de couplage en espace libre est toujours en mesure d'accéder à ces modes à très faible queue évanescente d'interaction, contrairement à ce qu'indiquait jusqu'ici la littérature. De tels résonateurs optofluidiques à gouttelette devraient trouver leur application notamment comme capteur d'environnement de l'air ambiant ou encore comme incubateur de micro-organismes vivants pouvant être suivis par voie optique / This work focuses on the study of optical properties of fluids at the micrometer scale. To this end, we designed, implemented and studied different types of optofluidic micro- resonators in the Lab-on-Chip format. Our analysis is based on analytical and numerical modeling, as well as experimental measurements conducted on optical microcavities; we use one of them for refractometry applications on homogeneous fluids and on complex fluids, as well as for the localization of solid microparticles by optical trapping. We first focused on the study of a new form of Fabry-Perot micro-cavity based on curved mirrors between which a capillary tube is inserted for injecting a fluidic solution. Experimental results demonstrated the ability of this device to be used as a refractometer with a detection limit of 1.9 × 10-4 RIU for homogeneous liquids. Furthermore, for liquid containing solid particles, the ability to control the microparticles position either by optical trapping or optical binding effects has been successfully demonstrated. In a second step, an optical resonator is simply formed from a liquid droplet placed on top of a superhydrophobe surface. The resulting quasi-spherical shape supports resonant whispering gallery modes. It is shown that, up to millimeter size droplets, the proposed technique of free-space coupling of light is still able to access these modes with very low evanescent tail interaction, contrary to what was indicated in the literature so far. Such optofluidic droplet resonators are expected to find their applications for environmental air quality monitoring, as well as for incubator of living micro-organisms that can be monitored optically
|
5 |
Optical coupling effects between plasmon resonances in disordered metal nanostructures and a nanocavityÖqvist, Elin January 2024 (has links)
Ultra-thin solar cells that incorporate earth-abundant and non-toxic materials are promising candidates in the endeavor toward sustainable energy harvesting. Methods to counteract the inevitable low absorption of thinner semiconductor layers are of high interest and have raised considerable attention in the research society. In an attempt to increase the absorption of these types of assemblies, optical coupling effects between the localized surface plasmon resonances (LSPR) of disordered Au nanostructures and a Fabry-Pérot cavity were studied using a previously established absorber/spacer/reflector stack. The disordered Au array was fabricated by evaporating a thin Au film on a substrate with a 55 nm SiO2 dielectric spacer and a 100 nm Al reflecting film, followed by thermal annealing. Nominal Au film thicknesses in the range of 5-25 Å and annealing temperatures of 200-500 oC were investigated. In situ spectroscopic ellipsometry measurements during the subsequent atomic layer deposition (ALD) of tin monosulfide (SnS) allowed analysis of how the optical properties of the SnS/Au absorber layer changed as a function of the growing SnS layer thickness. By employing the Transfer Matrix Method with the estimated optical properties from the in situ analysis, the absorptance of the absorber/spacer/reflector stacks was simulated as a function of the spacer thickness, revealing any signs of the characteristic anti-crossing behavior. It was discovered that a nominal Au film thickness of 25 Å, annealed at 450 oC, and coated with a SnS film of ∼13 nm primed toward the π-phase, resulted in strong optical coupling between the cavity mode and the LSPR. The energy difference at the avoided crossing in the specular reflectance measurement gave an estimated Rabi-splitting energy of 537 meV. This corresponded to about 40% of the original LSPR energy, placing itself within the ultra-strong coupling regime. To evaluate the relevance of the thin-layered structure in photovoltaic applications, more advanced computational methods are required to estimate the useful absorption that occurs in the SnS layer. Nevertheless, these results elucidate the realization of strong optical coupling effects between disordered Au nanostructures and a Fabry-Pérot cavity, and further the possibility of using scalable fabrication methods for this type of ultra-thin absorber/spacer/reflector stack.
|
6 |
Vers l’observation du bruit quantique de la pression de radiation dans un interféromètre suspendu : l’expérience QuRaG / Towards the observation of the radiation pressure noise in a suspended interferometer : the QuRaG experimentDi Pace, Sibilla 15 December 2014 (has links)
L'existence des ondes gravitationnelles (OG) est l'une des prédictions les plus intéressantes de la théorie de la Relativité Générale d'Einstein. La découverte expérimentale des OG serait donc un test important de la théorie elle-même et permettra d'ouvrir une nouvelle fenêtre d'observation en particulier dans les régions de l'Univers inaccessible à l'observation électromagnétique. Les détecteurs interférométriques, comme Virgo, sont les dispositifs les plus prometteurs pour la détection d’OG. Actuellement, leur sensibilité n'est pas encore suffisante pour avoir un taux d'observation de quelques événements/an. Un intense programme expérimental pour l’améliorer est en cours. Particulièrement, les prochaines générations de détecteurs d'OG, aux basses fréquences, seront limitées par l'effet de la pression de radiation (PR) sur les miroirs suspendus. Ce phénomène, pas encore observé expérimentalement, est l'objet d'un champ de recherche très actif. Mon travail ici présenté vise à la construction d'un détecteur pour l'étude des effets quantiques de la PR dans les détecteurs d’OG: QuRaG. Il sera constitué d'un interféromètre de Michelson suspendu dont chaque bras sera une cavité Fabry-Pérot de très haute finesse, dans laquelle seulement le miroir de fond sera suspendu et sensible au bruit quantique de la PR. Durant ma thèse j'ai participé activement au R&D de tous les sous-systèmes de QuRaG. Par conséquent, le travail que j'ai fait porte sur divers aspects du projet dont les problématiques appartiennent à différents domaines de la physique. Mon travail présenté ici démontre que QuRaG sera réalisable et qu’il observera le bruit de la PR dans la bande de fréquences attendue. / The existence of gravitational waves (GW) is one of the most interesting predictions of the theory of general relativity of Einstein. The experimental discovery of GW would be an important test of the theory itself. In addition, the detection of GW will open a new window of observation especially in those regions of the Universe inaccessible to electromagnetic observations. Interferometers, as Virgo are the most promising devices for the detection of GW. Currently, the sensitivity of these detectors is not yet sufficient to have a detection rate of few events/year. Therefore, an intense experimental program to improve the sensitivity is underway. Specifically, the sensitivity of the next generations of GW detectors, at low frequencies, will be limited by the effect of the radiation pressure (RP) on the suspended mirrors. This phenomenon not yet observed experimentally in the ground based GW detectors band, is currently the subject of a very active research field. My work presented here aims at building a detector for studying quantum effects of RP in GW detectors: the QuRaG experiment. It will consist of a suspended Michelson interferometer where each arm will be a high finesse Fabry-Pérot cavity, in which only the end mirror will be further suspended and then sensitive to the RP noise. During my PhD I have actively participated to the R&D of all QuRaG subsystems. Therefore, the work that I have done deals with various aspects of the project whose related problems belong to different domains of physics. My work described in this manuscript demonstrates that QuRaG is realizable and that it will be able to observe the RP noise in the expected frequency range.
|
7 |
Dipole dipole interactions in dense alkali vapors confined in nano-scale cells. / Interaction dipole dipole dans des vapeurs denses d'alcalins confinées en cellulesnanométriques.Peyrot, Tom 02 October 2019 (has links)
Les vapeurs atomiques confinées dans des cellules nanométriques constituent une plateforme intéressante pour la réalisation de senseurs atomiques. Dans cette thèse, nous étudions l’interaction entre la lumière et un ensemble d’atomes d’alcalins dans une telle cellule. Nous nous concentrons sur les phénomènes qui pourraient modifier la réponse optique du système et ainsi affecter la sensibilité du senseur. Premièrement, nous étudions la réponse non locale à la lumière induite par le mouvement des atomes dans la vapeur thermique. Quand la distance de relaxation des atomes excède la taille de la cellule, la réponse optique dépend de la taille du système. En transmission, nous avons montré que cela entraine une modification des propriétés de la vapeur avec une période égale à la longueur d’onde de la transition optique. Nous avons ensuite montré que lorsque la densité augmente, la réponse redevient locale. De plus, dans ce régime dense, l’interaction dipôle-dipôle résonnante engendre des déplacements de fréquences collectifs pour des ensembles sub-longueur d’onde. Nous avons démontré que ces shifts sont induits par la cavité formée par la cellule, clarifiant ainsi un débat de plus de 40 ans. Pour ce faire, nous avons développé un modèle pour extraire les effets de la densité déconvolués de ceux de la cavité. Proche des surfaces, la réponse optique des atomes est aussi impactée par l’interaction de van der Waals. Nous avons introduit une nouvelle méthode pour extraire avec précision la force de cette interaction. Nous avons également construit une nouvelle génération de nano-cellules super-polies en verre et enfin comparé les propriétés spectrales en transmission et spectroscopie hors d’axe. / Alkali vapors confined in nano-scale cells are promising tools for future integrated atom-based sensor. In this thesis, we investigate the interaction between light and an ensemble of atoms confined in a nano-geometry. We focus on the different processes that can modify the optical response of the atomic ensemble and possibly affect the sensitivity of a sensor based on that technology. First, we study the non-local response of atoms to a light excitation due the atomic motion in thermal vapors. When the distance over which the atoms relaxes is larger than the size of the cell, the optical response depends on the size of the system. We have observed that for transmission spectroscopy, this leads to a periodic modification of the optical response with a period equal to the wavelength of the optical transition. Subsequently we showed that when the density of atom increases, the atomic response becomes local again. In this dense regime, the resonant dipole-dipole interaction in a sub-wavelength geometry leads to collective frequency shifts of the spectral lines. We demonstrate that these shifts were induced by the cavity formed by the cell walls, hence clarifying a long-standing issue. We developed a model to extract the density shifts deconvolved from the cavity effects. Close to a surface, the optical response is also affected by the van der Waals atom-surface interaction. We introduced a new method to extract precisely the strength of this interaction. We also developed a new generation of super-polished glass nano-cells and we presented promising spectroscopic signals. Finally, using these cells, we have compared transmission and off-axis spectroscopic techniques.
|
Page generated in 0.0652 seconds