Spelling suggestions: "subject:"face arecognition"" "subject:"face 2recognition""
101 |
3D face structure extraction from images at arbitrary poses and under arbitrary illumination conditions /Zhang, Cuiping. Cohen, Fernand S. January 2006 (has links)
Thesis (Ph. D.)--Drexel University, 2006. / Includes abstract and vita. Includes bibliographical references (leaves 165-171).
|
102 |
Gender differences in face recognition: The role of interest and friendshipLovén, Johanna January 2006 (has links)
Women outperform men in face recognition and are especially good at recognizing other females’ faces. This may be caused by a larger female interest in faces. The aims of this study were to investigate if women were more interested in female faces and if depth of friendship was related to face recognition. Forty-one women and 16 men completed two face recognition tasks: one in which the faces shown earlier had been presented one at a time, and one where they had been shown two and two. The Network of Relationships Inventory was used to assess depth of friendships. As hypothesized, but not statistically significant, women tended to recognize more female faces when faces were presented two and two. No relationships were found between depth of friendships and face recognition. The results gave some support for the previously untested hypothesis that interest has importance in women’s recognition of female faces.
|
103 |
Harnessing Social Networks for Social Awareness via Mobile Face RecognitionBloess, Mark 14 February 2013 (has links)
With more and more images being uploaded to social networks each day, the resources for identifying a large portion of the world are available. However the tools to harness and utilize this information are not sufficient. This thesis presents a system, called PhacePhinder, which can build a face database from a social network and have it accessible from mobile devices. Through combining existing technologies, this is made possible. It also makes use of a fusion probabilistic latent semantic analysis to determine strong connections between users and content. Using this information we can determine the most meaningful social connection to a recognized person, allowing us to inform the user of how they know the person being recognized. We conduct a series of offline and user tests to verify our results and compare them to existing algorithms. We show, that through combining a user’s friendship information as well as picture occurrence information, we can make stronger recommendations than based on friendship alone. We demonstrate a working prototype that can identify a face from a picture taken from a mobile phone, using a database derived from images gathered directly from a social network, and return a meaningful social connection to the recognized face.
|
104 |
Automated Pose Correction for Face RecognitionGodzich, Elliot J. 01 January 2012 (has links)
This paper describes my participation in a MITRE Corporation sponsored computer science clinic project at Harvey Mudd College as my senior project. The goal of the project was to implement a landmark-based pose correction system as a component in a larger, existing face recognition system. The main contribution I made to the project was the implementation of the Active Shape Models (ASM) algorithm; the inner workings of ASM are explained as well as how the pose correction system makes use of it. Included is the most recent draft (as of this writing) of the final report that my teammates and I produced highlighting the year's accomplishments. Even though there are few quantitative results to show because the clinic program is ongoing, our qualitative results are quite promising.
|
105 |
DSP Based Real-Time Human Face Recognition SystemTseng, Yu-Chan 04 July 2005 (has links)
The thesis illustrates the development of DSP-based¡§Real-Time Human Face Recognition System¡¨.The principal system consists of three major subsystems.There are Image Acquisition System¡AImage Preprocessing System and human face characteristic extraction .
For experiment,we adopted colored face image with complex background and simulate on PC.We found the characteristic points and characteristic vectors from the face image which is searched from Gene algorithm.Then,we use the recognition system to recognize the face image.Finally we implant it to DSP.
Shown by the experimental result,this system has good recognition
and efficiency.
|
106 |
Face Recognition for Mobile Phone ApplicationsOlausson, Erik January 2008 (has links)
<p>Att applicera ansiktsigenkänning direkt på en mobiltelefon är en utmanande uppgift, inte minst med tanke på den begränsade minnes- och processorkapaciteten samt den stora variationen med avseende på ansiktsuttryck, hållning och ljusförhållande i inmatade bilder.</p><p>Det är fortfarande långt kvar till ett färdigutvecklat, robust och helautomatiskt ansiktsigenkänningssystem för den här miljön. Men resultaten i det här arbetet visar att genom att plocka ut feature-värden från lokala regioner samt applicera en välgjord warpstrategi för att minska problemen med variationer i position och rotation av huvudet, är det möjligt att uppnå rimliga och användbara igenkänningsnivåer. Speciellt för ett halvautomatiskt system där användaren har sista ordet om vem personen på bilden faktiskt är.</p><p>Med ett galleri bestående av 85 personer och endast en referensbild per person nådde systemet en igenkänningsgrad på 60% på en svårklassificerad serie testbilder. Totalt 73% av gångerna var den rätta individen inom de fyra främsta gissningarna.</p><p>Att lägga till extra referensbilder till galleriet höjer igenkänningsgraden rejält, till nästan 75% för helt korrekta gissningar och till 83,5% för topp fyra. Detta visar att en strategi där inmatade bilder läggs till som referensbilder i galleriet efterhand som de identifieras skulle löna sig ordentligt och göra systemet bättre efter hand likt en inlärningsprocess.</p><p>Detta exjobb belönades med pris för "Bästa industrirelevanta bidrag" vid Svenska sällskapet för automatiserad bildanalys årliga konferens i Lund, 13-14 mars 2008.</p> / <p>Applying face recognition directly on a mobile phone is a challenging proposal due to the unrestrained nature of input images and limitations in memory and processor capabilities.</p><p>A robust, fully automatic recognition system for this environment is still a far way off. However, results show that using local feature extraction and a warping scheme to reduce pose variation problems, it is possible to capitalize on high error tolerance and reach reasonable recognition rates, especially for a semi-automatic classification system where the user has the final say.</p><p>With a gallery of 85 individuals and only one gallery image per individual available the system is able to recognize close to 60 % of the faces in a very challenging test set, while the correct individual is in the top four guesses 73% of the time.</p><p>Adding extra reference images boosts performance to nearly 75% correct recognition and 83.5% in the top four guesses. This suggests a strategy where extra reference images are added one by one after correct classification, mimicking an online learning strategy.</p>
|
107 |
Studies on facial surface reconstruction from image correspondenceCheng, Kin-shing, Dominic. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 77-82)f.
|
108 |
Features and statistical classifiers for face image analysis /Song, Qing, January 2001 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2001. / Bibliography: leaves 210-216.
|
109 |
Non-reversible mathematical transforms for secure biometric face recognitionDabbah, Mohammad A. January 2008 (has links)
As the demand for higher and more sophisticated security solutions has dramatically increased, a trustworthy and a more intelligent authentication technology has to takeover. That is biometric authentication. Although biometrics provides promising solutions, it is still a pattern recognition and artificial intelligence grand challenge. More importantly, biometric data in itself are vulnerable and requires comprehensive protection that ensures their security at every stage of the authentication procedure including the processing stage. Without this protection biometric authentication cannot replace traditional authentication methods. This protection however cannot be accomplished using conventional cryptographic methods due to the nature of biometric data, its usage and inherited dynamical changes. The new protection method has to transform the biometric data into a secure domain where original information cannot be reversed or retrieved. This secure domain has also to be suitable for accurate authentication performance. In addition, due to the permanence characteristic of the biometric data and the limited number of valid biometrics for each individual, the transform has to be able to generate multiple versions of the same original biometric trait. This to facilitate the replacement and the cancellation of any compromised transformed template with a newer one without compromising the security of the system. Hence the name of the transform that is best known as cancellable biometric. Two cancellable face biometric transforms have been designed, implemented and analysed in this thesis, the Polynomial and Co-occurrence Mapping (PCoM) and the Randomised Radon Signatures (RRS). The PCoM transform is based on high-order polynomial function mappings and co-occurrence matrices derived from the face images. The secure template is formed by the Hadamard product of the generated metrics. A mathematical framework of the two-dimensional Principal Component Analysis (2DPCA) recognition is established for accuracy performance evaluation and analysis. The RRS transform is based on the Radon Transform (RT) and the random projection. The Radon Signature is generated from the parametric Radon domain of the face and mixed with the random projection of the original face image. The transform relies on the extracted signatures and the Johnson-Lindenstrauss lemma for high accuracy performance. The Fisher Discriminant Analysis (FDA) is used for evaluating the accuracy performance of the transformed templates. Each of the transforms has its own security analysis besides a comprehensive security analysis for both. This comprehensive analysis is based on a conventional measure for the Exhaustive Search Attack (ESA) and a new derived measure based on the lower-bound guessing entropy for Smart Statistical Attack (SSA). This entropy measure is shown to be greater than the Shannon lower-bound of the guessing entropy for the transformed templates. This shows that the transforms provide greater security while the ESA analysis demonstrates immunity against brute force attacks. In terms of authentication performance, both transforms have either maintained or improved the accuracy of authentication. The PCoM has maintained the recognition rates for the CMU Advance Multimedia Processing Lab (AMP) and the CMU Pose, Illumination & Expression (PIE) databases at 98.35% and 90.13% respectively while improving the rate for the Olivetti Research Ltd (ORL) database to 97%. The transform has achieved a maximum recognition performance improvement of 4%. Meanwhile, the RRS transform has obtained an outstanding performance by achieving zero error rates for the ORL and PIE databases while improving the rate for the AMP by 37.50%. In addition, the transform has significantly enhanced the genuine and impostor distributions separations by 263.73%, 24.94% and 256.83% for the ORL, AMP and PIE databases while the overlap of these distributions have been completely eliminated for the ORL and PIE databases.
|
110 |
An efficient algorithm for face sketch synthesis using Markov weight fields and cascade decomposition methodZhou, Hao, 周浩 January 2012 (has links)
Great progress has been made in face sketch synthesis in recent years. State-of-the-art methods commonly apply a Markov Random Fields (MRF) model to select local sketch patches from a set of training data. Such methods, however, have two major drawbacks. Firstly, the MRF model used cannot synthesize new sketch patches. Secondly, the optimization problem in solving the MRF is NP-hard. In this thesis, a novel Markov Weight Fields (MWF) model is proposed. By applying linear combination of candidate patches, MWF is capable of synthesizing new sketch patches. The MWF model can be formulated into a convex quadratic programming (QP) problem to which the optimal solution is guaranteed. Based on the Markov property of MWF model, a cascade decomposition method (CDM) is further proposed for solving such a large scale QP problem efficiently. Experiments show that the proposed CDM is very efficient, and only takes about 2:4 seconds. To deal with illumination changes of input photos, five special shading patches are included as candidate patches in addition to the patches selected from the training data. These patches help keeping structure of the face under different illumination conditions as well as synthesize shadows similar to the input photos. Extensive experiments on the CUHK face sketch database, AR database and Chinese celebrity photos show that the proposed model outperforms the common MRF model used in other state-of-the-art methods and is robust to illumination changes. / published_or_final_version / Computer Science / Master / Master of Philosophy
|
Page generated in 0.3521 seconds