Spelling suggestions: "subject:"coacial serve."" "subject:"cracial serve.""
1 |
The anatomy of the terminal rami of the anterior superior alveolar and nasopalatine nerves in the region of the incisive canalArentz, Richard E. January 1964 (has links)
Thesis (M.S.)--University of Michigan, 1964. / Typescript (photocopy). Includes bibliographical references (leaves [48-49]). Also issued in print.
|
2 |
The anatomy of the terminal rami of the anterior superior alveolar and nasopalatine nerves in the region of the incisive canalArentz, Richard E. January 1964 (has links)
Thesis (M.S.)--University of Michigan, 1964. / Typescript (photocopy). eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves [48-49]).
|
3 |
Facial nerve injury and microsurgical repair : experimental and clinical studies /Jergović, Davor January 2002 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2002. / Härtill 5 uppsatser.
|
4 |
Effects of strength training on neuromuscular facial rehabilitationPerry, Emily S. January 2010 (has links) (PDF)
Thesis (M.A. in speech and hearing sciences)--Washington State University, May 2010. / Title from PDF title page (viewed on Feb. 9, 2010). "Department of Speech and Hearing Sciences." Includes bibliographical references (p. 26-30).
|
5 |
Intracranial facial nerve lesion : experimental study on neural degeneration and its treatment /Mattsson, Per, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2000. / Härtill 6 uppsatser.
|
6 |
"Avaliação do risco potencial de lesão do nervo facial nas vias de acesso pré-auricular e submandibular no tratamento cirúrgico das fraturas do processo condilar da mandíbula" / "Assessment of hte potential risk of lesion of the facial nerve during peauricular and submandibular approaches to the surgical treatment for mandibular condylar process fractures"Peres, Flavio Francisco de Godoy 16 December 2002 (has links)
RESUMO O nervo facial é uma importante preocupação para o cirurgião durante o acesso à cabeça da mandíbula, quando o tratamento cirúrgico é escolhido. As duas vias mais freqüentemente utilizadas, a pré-auricular e submandibular possuem uma relação anatômica direta com seu ramo temporal e marginal da mandíbula, respectivamente. Tanto o desconhecimento de possíveis variações na sua distribuição anatômica do nervo facial como os elementos fundamentais da técnica cirúrgica influenciam o risco de seqüela pós-operatória. Para a via de acesso pré-auricular, há uma definida posição imediatamente pré-auricular junto à cartilagem do trágus, a incisão relaxante é apontada por alguns autores como manobra preventiva de seqüelas como o lagoftalmo (incapacidade da oclusão palpebral). O plano único profundo à fáscia temporoparietal (na fossa temporal), ao periósteo do arco zigomático, e à fáscia parotideomassetérica geram um retalho que parece proteger os ramos que cruzam o mencionado arco. No que tange à via de acesso submandibular, o ângulo e a base da mandíbula bem como os vasos faciais (artéria e veia faciais) são referenciais anatômicos consagrados na literatura. Entretanto, a mesma literatura aponta para uma freqüente pluricidade na ramificação do clássico nervo marginal da mandíbula, ramo do nervo facial, em uma situação subplatismal a uma distância variável da base da mandíbula. A não identificação do nervo pode acarretar diferentes graus de seqüela labial pela lesão nervosa por compressão ou estiramento mecânicos, queimaduras nervosas na eletrocoagulação imprecisa e tempestiva de vasos adjacentes, ressecção nervosa com a conseqüente paresia transitória ou ainda a paralisia permanente da musculatura do lábio inferior do lado afetado. Lesão térmica ou mecânica devem ser prevenidos durante as manobras hemostasia e sínteses. Para tanto, o mapeamento intra-operatório pré-incisional (paciente sob anestesia geral) de modo ainda bastante incipiente parece ser uma ferramenta promissora na localização precisa de modo a orientar profilaticamente a incisão inicial. / SUMMARY The facial nerve is an important surgeon concern while approaching the mandibular condylar process in the fracture surgical treatment. The preauricular and submandibular pathways are the two most frequently used approaches, which have a direct relation to the temporalis and marginalis mandibulae branches of the facial nerve, respectively. The lack of knowledge over possible variations on their anatomical distribution and mastery of the fundamental elements on surgical technique jeopardize the patient to the postoperative sequels. About the preauricular approach, there is a well-established tragus anterior incision. Some authors point out a continuous relaxing incision as a preventive maneuver to avoid lagophtalmus, for instance. The opening of an unique plane formed by the profound face of the temporoparietal fascia in the temporal region, deep face of periostheum over zygomatic arch and parotideomasseteric fascia as well generates a protective flap which includes facial nerve branches that cross up-and-forwardly the zygomatic arch. In regards to the submandibular approach, the angle and lower border of the mandible as well facial vessels are scientific well-known anatomic landmarks to place the initial incision, preventing the facial nerve from lesion. Nevertheless, recent scientific publications point out some frequent multiple branching patterns in the marginalis mandibulae, a facial nerve branch, always underneath platysm muscle in a variable caudad distance from lower border of the mandible. The lack of identification of the nerve may lead to different degrees of lower lid sequel by compression or strechening strengths, electric burns during imprecise adjacent bleeding vessels electric coagulation maneuver, or even a complete nerve transection responsible for a permanent paralysis of the lower lid. Thermal or mechanical injury should be avoided during haemostatic and synthesis maneuvers. The intra-operative pre-incisional mapping of the facial nerve (patient under general anesthesia), a very new method already on experimentation seems to be a promising tool in the nerve localization in the way to guide the surgeon before initial incision.
|
7 |
"Avaliação do risco potencial de lesão do nervo facial nas vias de acesso pré-auricular e submandibular no tratamento cirúrgico das fraturas do processo condilar da mandíbula" / "Assessment of hte potential risk of lesion of the facial nerve during peauricular and submandibular approaches to the surgical treatment for mandibular condylar process fractures"Flavio Francisco de Godoy Peres 16 December 2002 (has links)
RESUMO O nervo facial é uma importante preocupação para o cirurgião durante o acesso à cabeça da mandíbula, quando o tratamento cirúrgico é escolhido. As duas vias mais freqüentemente utilizadas, a pré-auricular e submandibular possuem uma relação anatômica direta com seu ramo temporal e marginal da mandíbula, respectivamente. Tanto o desconhecimento de possíveis variações na sua distribuição anatômica do nervo facial como os elementos fundamentais da técnica cirúrgica influenciam o risco de seqüela pós-operatória. Para a via de acesso pré-auricular, há uma definida posição imediatamente pré-auricular junto à cartilagem do trágus, a incisão relaxante é apontada por alguns autores como manobra preventiva de seqüelas como o lagoftalmo (incapacidade da oclusão palpebral). O plano único profundo à fáscia temporoparietal (na fossa temporal), ao periósteo do arco zigomático, e à fáscia parotideomassetérica geram um retalho que parece proteger os ramos que cruzam o mencionado arco. No que tange à via de acesso submandibular, o ângulo e a base da mandíbula bem como os vasos faciais (artéria e veia faciais) são referenciais anatômicos consagrados na literatura. Entretanto, a mesma literatura aponta para uma freqüente pluricidade na ramificação do clássico nervo marginal da mandíbula, ramo do nervo facial, em uma situação subplatismal a uma distância variável da base da mandíbula. A não identificação do nervo pode acarretar diferentes graus de seqüela labial pela lesão nervosa por compressão ou estiramento mecânicos, queimaduras nervosas na eletrocoagulação imprecisa e tempestiva de vasos adjacentes, ressecção nervosa com a conseqüente paresia transitória ou ainda a paralisia permanente da musculatura do lábio inferior do lado afetado. Lesão térmica ou mecânica devem ser prevenidos durante as manobras hemostasia e sínteses. Para tanto, o mapeamento intra-operatório pré-incisional (paciente sob anestesia geral) de modo ainda bastante incipiente parece ser uma ferramenta promissora na localização precisa de modo a orientar profilaticamente a incisão inicial. / SUMMARY The facial nerve is an important surgeon concern while approaching the mandibular condylar process in the fracture surgical treatment. The preauricular and submandibular pathways are the two most frequently used approaches, which have a direct relation to the temporalis and marginalis mandibulae branches of the facial nerve, respectively. The lack of knowledge over possible variations on their anatomical distribution and mastery of the fundamental elements on surgical technique jeopardize the patient to the postoperative sequels. About the preauricular approach, there is a well-established tragus anterior incision. Some authors point out a continuous relaxing incision as a preventive maneuver to avoid lagophtalmus, for instance. The opening of an unique plane formed by the profound face of the temporoparietal fascia in the temporal region, deep face of periostheum over zygomatic arch and parotideomasseteric fascia as well generates a protective flap which includes facial nerve branches that cross up-and-forwardly the zygomatic arch. In regards to the submandibular approach, the angle and lower border of the mandible as well facial vessels are scientific well-known anatomic landmarks to place the initial incision, preventing the facial nerve from lesion. Nevertheless, recent scientific publications point out some frequent multiple branching patterns in the marginalis mandibulae, a facial nerve branch, always underneath platysm muscle in a variable caudad distance from lower border of the mandible. The lack of identification of the nerve may lead to different degrees of lower lid sequel by compression or strechening strengths, electric burns during imprecise adjacent bleeding vessels electric coagulation maneuver, or even a complete nerve transection responsible for a permanent paralysis of the lower lid. Thermal or mechanical injury should be avoided during haemostatic and synthesis maneuvers. The intra-operative pre-incisional mapping of the facial nerve (patient under general anesthesia), a very new method already on experimentation seems to be a promising tool in the nerve localization in the way to guide the surgeon before initial incision.
|
8 |
Sistematización morfo-funcional del complejo motor facial del perro. Análisis de las neuronas de origen de los ramos periféricos del nervio facial, identificadas por transporte axónico retrógrado de peroxidasa.Prats Galino, Alberto 27 April 1987 (has links)
El núcleo o complejo motor del nervio facial es un centro nervioso situado entre el bulbo raquídeo y la protuberancia, en la vecindad de la superficie ventrolateral troncoencefálica. Esta masa celular inerva la musculatura derivada del segundo arco branquial (arco hioideo), que comprende la totalidad de músculos faciales superficiales y ciertos músculos faciales profundos.
Las fibras branquiomotoras faciales, después de un complicado trayecto intraencefálico e intrapetroso, emergen del cráneo por el orificio estilomastoideo, distribuyéndose periféricamente a través de seis ramos principales: ramos auriculares anterior y posterior, ramo cigomático, ramos bucolabiales superior e inferior y ramo cervical.
Por otra parte, en preparaciones histológicas teñidas según el método de Nissl, se ha descrito una subdivisión citoarquitectónica del núcleo facial en cinco o seis columnas celulares longitudinales.
La correlación que existe en el perro entre los ramos periféricos del nervio facial y las subdivisiones de su núcleo de origen ha sido analizada exclusivamente mediante la aplicación de métodos degenerativos retrógrados. Sin embargo, se han propuesto diferentes patrones de organización funcional del núcleo motor facial como consecuencia de la dificultad que presenta la interpretación de cambios cromatolíticos moderados secundarios a la axotomía.
La topografía exacta de los somas de origen de los ramos periféricos del VII par, a nivel de este complejo nuclear, ha sido establecida en la presente tesis doctoral aplicando selectivamente la enzima peroxidasa en el extremo proximal de cada uno de los mismos, empleándose para dicho estudio un total de 43 perros jóvenes, de 2 a 18 semanas de edad, de ambos sexos, y con pesos comprendidos entre 450 y 7230 gr. Asimismo, se han caracterizado morfométricamente, con ayuda de un analizador automático de imágenes IBAS-2, las poblaciones neuronales que han resultado marcadas por transporte axónico retrógrado de la enzima, determinándose su área celular, perímetro y diámetros máximo, mínimo y medio (D).
El análisis de la organización de este centro motor ha ido precedido por una estudio morfológico mediante procedimientos cito- y mielo- arquitectónicos, habiéndose utilizado técnicas de grafismo asistido por ordenador para la reconstrucción tridimensional de un modelo sólido de su superficie.
Desde el punto de vista citoarquitectónico, distinguimos en el núcleo facial del perro tres regiones: lateral, intermedia y medial. La primera comprende los subnúcleos ventrolateral (VL) y dorsolateral (DL). La región intermedia incluye el subnúcleo intermedio (l), mientras que la región medial constan de los subnúcleos ventromedial (VM), intermedio-medial (IM) y dorsomedial (DM). Estas subdivisiones se extienden por distancias variables en dirección caudal y rostral, constituyendo seis columnas celulares longitudinales delimitadas por un número idéntico de surcos que deprimen la superficie del núcleo.
Los modelos tridimensionales de la superficie del núcleo facial demuestran la mayor profundidad de los surcos ventral, dorsolateral y dorsomedial que determinan la segmentación látero-medial primaria del núcleo, en comparación con el trayecto generalmente más irregular y superficial de los surcos lateral, medlal-postenor y medial-anterior, responsables de su segmentación secundaria en sentido antera-posterior,
Existen, asimismo, importantes variaciones regionales en cuanto a la disposición y tamaño de las diferentes columnas celulares del núcleo facial. Su polo caudal está representado por los subnúcleos laterales, apareciendo, en niveles progresivamente más craneales, el resto de subdivisiones. Estas alcanzan su mayor grado de diferenciación en las regiones medias y medio-craneales del núcleo. La reducción de su volumen se inicia por los subnúcleos VL y VM. El polo superior del núcleo facial suele estar constituido por la prolongación craneal de las subdivisiones intermedia y dorsomedial.
En el estudio HRP-neurohistoquímico se ha observado un marcaje exclusivamente homolateral a la zona de aplicación de la enzima, correspondiendo el 22 % del total de neuronas marcadas al ramo auricular anterior, el 18 % al ramo cigomático, el 20 % al ramo bucolabial superior, el 26 % al ramo bucolabial inferior, el 3 % al ramo cervical y el 11 % a los ramos auriculares posteriores. En conjunto, las motoneuronas faciales presentan un área de 620,30 m2 (± 305,76 mµ), un perímetro de 113,49 mµ (±31.91 mµ) y un diámetro medio de 31,68 mµ (± 8,17 mµ), existiendo una tendencia de los elementos celulares más grandes a ocupar las reglones mas craneales.
Las neuronas de origen del ramo auricular anterior se distribuyen en las porciones medial y lateral del subnúcleo IM, en las regiones dorsales del VM y en ciertas regiones del DM. Son, en general, células de mediano tamaño (D = 28,08 mµ ± -4,63 mµ).
La aplicación de HRP a nivel del ramo cigomático ha determinado un intenso marcaje de las neuronas del 5 subnúcleo 1 y porción lateral del subnúcleo IM, aunque también el borde dorsal de la división DL contiene algunas células cigomáticas. Estas han presentado el mayor diámetro medio de los calculados (D = 42,25 mµ ± 7.11 mµ). En la población cigomática intermedia existe un predominio de células grandes, estando constituida la población cigomática intermedio-medial por células de mediano tamaño.
Las neuronas de origen del ramo bucolabial superior (D = 30,22 mµ ± 5,47 mµ) tienden a organizarse en dos subpoblaciones: dorsolateral y ventrolateral. La primera es cuantitativamente más importante, si bien no se han hallado diferencias morfométricas significativas entre ambas. Una escasa proporción de células bucolabiales superiores ocupa los subnúcleos VM e IM.
La población de origen del ramo bucolabial inferior también se distribuye en los subnúcleos DL y VL pero, a diferencia de la anterior, tiene un predominio ventrolateral Sus células presentan, en promedio, un diámetro de 27.73 mµ (± 3.71 mµ). Además, cierto número de fibras que se distribuyen por dicho ramo se originan en el subnúcleo VM.
El ramo cervical está representado a nivel del subnúcleo VM, habiéndose determinado en las células de esta población un diámetro medio de 29,01 mµ (± 5,50 mµ).
Por último, una importante proporción de neuronas auriculares posteriores (D = 29,45 mµ ± 8,54 mµ) se agrupa en el subnúcleo DM, aunque se han detectado abundantes células HRP-positivas en el subnúcleo IM, preferentemente en su porción medial. Entre estas últimas se hallan las células con mayores dimensiones del núcleo facial.
Nuestro estudio experimental confirma que en el complejo nuclear facial del perro existe una organización funcional perfectamente determinada, que se relaciona con su segmentación citoarquitectónica: los subnúcleos laterales (VL y DL) representan el origen de los ramos bucolabiales: del subnúcleo 1 y porción lateral del subnúcleo IM parten las fibras del ramo cigomático: las motoneuronas auriculares se localizan en los subnúcleos DM e IM; y el subnúcleo VM da origen al ramo cervical, y a cierta proporción de fibras que se distribuyen a través de los ramos auricular anterior y bucolabiales. / “MORPHO-FUNCTIONAL SYSTEMATIZATION OF THE FACIAL MOTOR COMPLEX IN THE DOG. ANALYSIS OF ORIGIN NEURONS OF THE FACIAL NERVE PERIPHERAL BRANCHES, IDENTIFIED BY RETROGRADE /\XONAL TRANSPORT OF HORSERADISH PEROXIDASE”.
TEXT:
In 41 young dogs the morphology and organization of the facial motor nucleus has been analyzed with the aid of four methods: (1) cyto- and myelo-architectonic techniques; (2) selective application of horseradish peroxidise (HRP) to the six main peripheral branches of the facial nerve (anterior and posterior auricular branches, zygomatic branch, superior and inferior buccolabial branches and cervical branch;: (3) morphometric analysis of neurons labelled by retrograde axonal transport; and (4) computer-aided three-dimensional reconstruction of the facial nucleus surface, from parallel serial sections.
Based on cytoarchitectonic criteria we divide the facial motor nucleus into six subnuclei: ventrolateral (VL), dorsolateral (DL), intermediate (I), ventromedial (VM), dorsomedial (DM) and intermediate-medial (IM). In the last subdivision we describe two portions: internal and external.
After HRP application to the proximal stump of the six branches investigated, the labelling has been exclusively ipsilateral. The mean cellular area of the labelled motoneurons measures 620 mµ 2. The mean perimeter is 113 mµ, being 39 mµ, 25 mµ and 32 mµ the maximum, minimum and medium (D) diameters, respectively.
Neurons of origin of the anterior auricular branch (D = 28 mµ) are distributed in the IM subnucleus and certain regions of the VM and OM. The zygomatic branch is represented in the I subnucleus and lateral portion of the IM. Some zygomatic neurons (D = 42 mµ) are also lying at the dorsal border of the DL subdivision. The superior (D = 30 mµ) and inferior (D = 28 mµ) buccolabial motoneurons are localized in the lateral region. The former display a DL predominance, and the later are principally VL. Few buccolabial fibers are originated from the VM subnucleus. Cervical neurons (D = 29 mµ) are restricted to the YM subnucleus, whereas great proportion of posterior auricular neurons (D = 30 mµ) are grouped within the OM subnucleus and medial portion of the IM subdivision.
|
9 |
Immunoregulation of the central response to peripheral nerve injury: motoneuron survival and relevance to ALSSetter, Deborah Olmstead 08 March 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Facial nerve axotomy (FNA) in immunodeficient mice causes significantly more
facial motoneuron (FMN) loss relative to wild type (WT), indicating that the immune
system is neuroprotective. Further studies reveal that both CD4+ T cells and interleukin
10 (IL-10) act centrally to promote neuronal survival after injury. This study first
investigated the roles of IL-10 and CD4+ T cells in neuroprotection after axotomy.
CD4+ T cell-mediated neuroprotection requires centrally-produced IL-10, but the
source of IL-10 is unknown. Using FNA on IL-10 reporter mice, immunohistochemistry
was employed to identify the IL-10 source. Unexpectedly, axotomy induced astrocyte
production of IL-10. To test if microglia- or astrocyte-specific IL-10 is needed for
neuroprotection, cell-specific conditional knockout mice were generated. Neither
knockout scenario affected FMN survival after FNA, suggesting that coordinated IL-10
production by both glia contributes to neuroprotection.
The effect of immune status on the post-FNA molecular response was studied to
characterize CD4+ T cell-mediated neuroprotection. In the recombinase-activating gene2 knockout (RAG-2-/-) mouse model of immunodeficiency, glial microenvironment
responses were significantly impaired. Reconstitution with CD4+ T cells restored glial
activation to normal levels. Motoneuron regeneration responses remained unaffected by
immune status. These findings indicate that CD4+ T cell-mediated neuroprotection after
injury occurs indirectly via microenvironment regulation. Immunodysregulation is evident in amyotrophic lateral sclerosis (ALS), and FMN
survival after FNA is worse in the mutant superoxide dismutase (mSOD1) mouse model
of ALS. Further experiments reveal that mSOD1 CD4+ T cells are neuroprotective in RAG-2-/- mice, whereas mSOD1 whole splenocytes (WS) are not. The third aim
examined if the mSOD1 WS environment inhibits mSOD1 CD4+ T cell glial regulation
after axotomy. Unexpectedly, both treatments were equally effective in promoting glial
activation. Instead, mSOD1 WS treatment induced a motoneuron-specific death
mechanism prevalent in ALS.
In conclusion, the peripheral immune system regulates the central glial
microenvironment utilizing IL-10 to promote neuronal survival after axotomy.
Astrocytes, specifically, may be responsible for transducing peripheral immune signals
into microenvironment regulation. Additionally, the immune system in ALS may directly
participate in disease pathology.
|
10 |
Facial Nerve Function After Microsurgical Resection in Vestibular Schwannoma Under Neurophysiological MonitoringArlt, Felix, Kasper, Johannes, Winkler, Dirk, Jähne, Katja, Fehrenbach, Michael Karl, Meixensberger, Jürgen, Sander, Caroline 27 July 2023 (has links)
Background: The use of intraoperative neurophysiological monitoring, including direct
nerve stimulation (especially the facial nerve), acoustic evoked potentials (AEP) and
somatosensory evoked potentials (SSEP), is a helpful tool in the microsurgery of
vestibular schwannoma to prevent nerve injury. Patient characteristics and intraoperative
and postoperative variables might also influence the postoperative facial nerve function.
The study was performed to investigate these variables and the intraoperative
neurophysiological monitoring values.
Methods: Seventy-nine patients with vestibular schwannoma were included
consecutively into this study. Intraoperative neurophysiological monitoring, including
SSEP, AEP, and direct nerve stimulation for facial and trigeminal nerve electromyography,
was performed utilizing digital data storage in all cases. The intensity (in volts) of the direct
stimulation and the latency (in ms) for the orbicularis oculi and the orbicularis oris muscle
and the amplitude (in mV) was measured. Univariate and multivariate statistical analyses
concerning the different parameters was performed directly after the operation and in the
subsequent follow-ups 3 and 6 months after the operation.
Results: The mean intensity was 0.79 V (SD.29). The latency and amplitude for the
oris muscle was 5.2ms (SD 2.07) and 0.68mV (SD.57), respectively. The mean latency
for the occuli muscle was 5.58ms (SD 2.2) and the amplitude was 0.58mV (SD 1.04).
The univariate and multivariate statistical analyses showed significance concerning the
postoperative facial nerve function and the amplitude of the direct stimulation of the
facial nerve in the orbicularis oris muscle (p = 0.03), so repeated direct nerve stimulation
might show FN function deterioration. The mean diameter of the tumors was 24mm
(range 10–57mm). Cross total resection and near total was achieved in 76 patients
(96%) and subtotal in three patients (4%). The preoperative House–Brakeman score
(HBS) 1 was constant in 65 (82%) cases. The mortality in our series was 0%; the overall
morbidity was 10%. The HBS was not influenced concerning the extent of resection.
The mean follow-up was 28 months (range 6 to 60 months). The limitations of the
study might be a low number of patients and the retrospective character of the study.
Conclusion: Intraoperative neurophysiological monitoring is crucial in vestibular
schwannoma surgery. Repeated direct nerve stimulation and a detected decreased
amplitude might show facial nerve function deterioration.
|
Page generated in 0.036 seconds