• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 13
  • 3
  • Tagged with
  • 38
  • 38
  • 28
  • 23
  • 22
  • 20
  • 18
  • 15
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles de signaux musicaux informés par la physiques des instruments : Application à l'analyse automatique de musique pour piano par factorisation en matrices non-négatives / Models of music signals informed by physics : Application to piano music analysis by non-negative matrix factorization

Rigaud, François 02 December 2013 (has links)
Cette thèse introduit des nouveaux modèles de signaux musicaux informés par la physique des instruments. Alors que les communautés de l'acoustique instrumentale et du traitement du signal considèrent la modélisation des sons instrumentaux suivant deux approches différentes (respectivement, une modélisation du mécanisme de production du son, opposée à une modélisation des caractéristiques "morphologiques" générales du son), cette thèse propose une approche collaborative en contraignant des modèles de signaux génériques à l'aide d'information basée sur l'acoustique. L'effort est ainsi porté sur la construction de modèles spécifiques à un instrument, avec des applications aussi bien tournées vers l'acoustique (apprentissage de paramètres liés à la facture et à l'accord) que le traitement du signal (transcription de musique). En particulier nous nous concentrons sur l'analyse de musique pour piano, instrument pour lequel les sons produits sont de nature inharmonique. Cependant, l'inclusion d'une telle propriété dans des modèles de signaux est connue pour entraîner des difficultés d'optimisation, allant jusqu'à endommager les performances (en comparaison avec un modèle harmonique plus simple) dans des tâches d'analyse telles que la transcription. Un objectif majeur de cette thèse est d'avoir une meilleure compréhension des difficultés liées à l'inclusion explicite de l'inharmonicité dans des modèles de signaux, et d'étudier l'influence de l'apport de cette information sur les performances d'analyse, en particulier dans une tâche de transcription. / This thesis introduces new models of music signals informed by the physics of the instruments. While instrumental acoustics and audio signal processing target the modeling of musical tones from different perspectives (modeling of the production mechanism of the sound vs modeling of the generic "morphological'' features of the sound), this thesis aims at mixing both approaches by constraining generic signal models with acoustics-based information. Thus, it is here intended to design instrument-specific models for applications both to acoustics (learning of parameters related to the design and the tuning) and signal processing (transcription). In particular, we focus on piano music analysis for which the tones have the well-known property of inharmonicity. The inclusion of such a property in signal models however makes the optimization harder, and may even damage the performance in tasks such as music transcription when compared to a simpler harmonic model. A major goal of this thesis is thus to have a better understanding about the issues arising from the explicit inclusion of the inharmonicity in signal models, and to investigate whether it is really valuable when targeting tasks such as polyphonic music transcription.
2

Transcription et séparation automatique de la mélodie principale dans les signaux de musique polyphoniques

Durrieu, Jean-Louis 07 May 2010 (has links) (PDF)
Nous proposons de traiter l'extraction de la mélodie principale, ainsi que la séparation de l'instrument jouant cette mélodie. La première tâche appartient au domaine de la recherche d'information musicale (MIR) : nous cherchons à indexer les morceaux de musique à l'aide de leur mélodie. La seconde application est la séparation aveugle de sources sonores (BASS) : extraire une piste audio pour chaque source présente dans un mélange sonore. La séparation de la mélodie principale et de l'accompagnement et l'extraction de cette mélodie sont traitées au sein d'un même cadre statistique. Le modèle pour l'instrument principal est un modèle de production source/filtre. Il suppose deux états cachés correspondant à l'état du filtre et de la source. Le modèle spectral choisi permet de prendre compte les fréquences fondamentales de l'instrument désiré et de séparer ce dernier de l'accompagnement. Deux modèles de signaux sont proposés, un modèle de mélange de gaussiennes amplifiées (GSMM) et un modèle de mélange instantané (IMM). L'accompagnement est modélisé par un modèle spectral plus général. Cinq systèmes sont proposés, trois systèmes fournissent la mélodie sous forme de séquence de fréquences fondamentales, un système fournit les notes de la mélodie et le dernier système sépare l'instrument principal de l'accompagnement. Les résultats en estimation de la mélodie et en séparation sont du niveau de l'état de l'art, comme l'ont montré nos participations aux évaluations internationales (MIREX'08, MIREX'09 et SiSEC'08). Nous avons ainsi réussi à intégrer de la connaissance musicale améliorant les résultats de travaux antérieurs sur la séparation de sources sonores.
3

Imagerie spectrale pour l'étude de structures profondes par tomographie optique diffusive de fluorescence

Montcuquet, Anne-Sophie 17 December 2010 (has links) (PDF)
L'imagerie optique de fluorescence permet de localiser des cibles biologiques comme des tumeurs, marquées par des fluorophores. Pour des applications au diagnostic chez l'Homme où l'épaisseur des tissus atteint plusieurs centimètres, la détection parasite de l'autofluorescence naturelle des tissus compromet la détection de la fluorescence d'intérêt et son élimination est la condition sine qua non d'une localisation correcte de la tumeur. L'objet de cette thèse a été l'étude spectrale de l'auto fluorescence des tissus et la mise au point d'une méthode de séparation de spectres aveugle permettant de supprimer sa contribution des mesures. La Factorisation en Matrices Non-négatives a été privilégiée, et de nouveaux algorithmes ont été proposés et testés sur données réelles. Nous avons démontré les performances de notre méthode dans l'amélioration de la détection des marqueurs et la reconstruction de la position de la tumeur en tomographie optique diffuse de fluorescence.
4

Factorisation de matrices et analyse de contraste pour la recommandation / Matrix Factorization and Contrast Analysis Techniques for Recommendation

Aleksandrova, Marharyta 07 July 2017 (has links)
Dans de nombreux domaines, les données peuvent être de grande dimension. Ça pose le problème de la réduction de dimension. Les techniques de réduction de dimension peuvent être classées en fonction de leur but : techniques pour la représentation optimale et techniques pour la classification, ainsi qu'en fonction de leur stratégie : la sélection et l'extraction des caractéristiques. L'ensemble des caractéristiques résultant des méthodes d'extraction est non interprétable. Ainsi, la première problématique scientifique de la thèse est comment extraire des caractéristiques latentes interprétables? La réduction de dimension pour la classification vise à améliorer la puissance de classification du sous-ensemble sélectionné. Nous voyons le développement de la tâche de classification comme la tâche d'identification des facteurs déclencheurs, c'est-à-dire des facteurs qui peuvent influencer le transfert d'éléments de données d'une classe à l'autre. La deuxième problématique scientifique de cette thèse est comment identifier automatiquement ces facteurs déclencheurs? Nous visons à résoudre les deux problématiques scientifiques dans le domaine d'application des systèmes de recommandation. Nous proposons d'interpréter les caractéristiques latentes de systèmes de recommandation basés sur la factorisation de matrices comme des utilisateurs réels. Nous concevons un algorithme d'identification automatique des facteurs déclencheurs basé sur les concepts d'analyse par contraste. Au travers d'expérimentations, nous montrons que les motifs définis peuvent être considérés comme des facteurs déclencheurs / In many application areas, data elements can be high-dimensional. This raises the problem of dimensionality reduction. The dimensionality reduction techniques can be classified based on their aim: dimensionality reduction for optimal data representation and dimensionality reduction for classification, as well as based on the adopted strategy: feature selection and feature extraction. The set of features resulting from feature extraction methods is usually uninterpretable. Thereby, the first scientific problematic of the thesis is how to extract interpretable latent features? The dimensionality reduction for classification aims to enhance the classification power of the selected subset of features. We see the development of the task of classification as the task of trigger factors identification that is identification of those factors that can influence the transfer of data elements from one class to another. The second scientific problematic of this thesis is how to automatically identify these trigger factors? We aim at solving both scientific problematics within the recommender systems application domain. We propose to interpret latent features for the matrix factorization-based recommender systems as real users. We design an algorithm for automatic identification of trigger factors based on the concepts of contrast analysis. Through experimental results, we show that the defined patterns indeed can be considered as trigger factors
5

Les factorisations en matrices non-négatives. Approches contraintes et probabilistes, application à la transcription automatique de musique polyphonique.

Bertin, Nancy 02 October 2009 (has links) (PDF)
La transcription automatique de la musique est l'opération qui consiste, partant du seul contenu audio, à produire une représentation symbolique (par exemple un fichier MIDI) d'un morceau de musique. Si la transcription de musique monodique est aujourd'hui bien maîtrisée, le cas de la musique polyphonique est en revanche un problème largement ouvert. Les décompositions de matrices en valeurs propres et en valeurs singulières sont des techniques classiques d'algèbre linéaire utilisées dans un grand nombre d'applications de traitement du signal. Elles permettent de représenter efficacement les données observées en utilisant un nombre limité d'atomes élémentaires. Contrairement à d'autres techniques de représentations du signal, ces atomes ne sont pas recherchés au sein d'un dictionnaire pré-défini, mais sont extraits des données elles-mêmes. La factorisation en matrices non-négatives (NMF) est une technique analogue d'algèbre linéaire, qui réduit le rang tout en fournissant des atomes à valeurs exclusivement positives, plus facilement interprétables. Elle fournit conjointement un dictionnaire extrait des données et la décomposition de ces mêmes données dans ce dictionnaire. Ce mémoire est consacré à l'étude théorique et expérimentale détaillée de ces méthodes. Il poursuit plusieurs objectifs : l'amélioration des performances des systèmes de transcription qui les utilisent, de la pertinence sémantique des représentations mi-niveau produites, et du contrôle des propriétés théoriques et pratiques des algorithmes existants et originaux mis en œuvre au cours de la thèse.
6

Chemical characterization, sources and origins of secondary inorganic aerosols measured at a suburban site in Northern France / Caractérisation chimique, sources et origines des aérosols inorganiques secondaires mesurés sur un site suburbain du Nord de la France

Roig Rodelas, Roger 29 June 2018 (has links)
Les particules fines troposphériques de diamètre aérodynamique inférieur à 2,5 µm (PM2.5) peuvent impacter la santé et les écosystèmes. Les aérosols inorganiques secondaires (AIS) et organiques (AO) contribuent fortement aux PM2.5. Pour comprendre leur formation et leur origine, une campagne d’1 an (août 2015 - juillet 2016) de mesures horaires de gaz précurseurs inorganiques et d’ions hydrosolubles particulaires a été menée sur un site urbain du nord de la France avec un MARGA 1S, complétées par les concentrations massiques en PM2.5, carbone suie, oxydes d’azote et éléments traces. Des niveaux élevés de nitrate d’ammonium (NA) ont été observés la nuit au printemps et de sulfate d’ammonium la journée en été. L’étude de la contribution des sources par le modèle PMF (Positive Matrix Factorization) a permis d’identifier 8 facteurs sources: 3 régionaux (riche en sulfates, riche en nitrates et marin) pour 73 à 78%, et 5 locaux (trafic, combustion de biomasse, fond industriel métallurgique, industrie locale et poussières minérales) (22-27%). De plus, un HR-ToF-AMS (spectromètre de masse à aérosols) et un SMPS (granulomètre) ont été utilisés lors d’une campagne intensive en hiver, afin de mieux documenter l’AO et la formation de nouvelles particules, respectivement. L’application du PMF aux spectres de masses d’AO a permis d’identifier 5 facteurs liés au trafic (15%), à la cuisson (11%), à la combustion de biomasse (25%), et à une oxydation plus ou moins forte de la matière organique (33% et 16%). Plusieurs événements nocturnes de formation de nouvelles particules impliquant les AIS, notamment du NA, ont été observés. / Tropospheric fine particles with aerodynamic diameters less than 2.5 µm (PM2.5) may impact health, climate and ecosystems. Secondary inorganic (SIA) and organic aerosols (OA) contribute largely to PM2.5. To understand their formation and origin, a 1-year campaign (August 2015 to July 2016) of inorganic precursor gases and PM2.5 water-soluble ions was performed at an hourly resolution at a suburban site in northern France using a MARGA 1S, complemented by mass concentrations of PM2.5, Black Carbon, nitrogen oxides and trace elements. The highest levels of ammonium nitrate (AN) and sulfate were observed at night in spring and during daytime in summer, respectively. A source apportionment study performed by positive matrix factorization (PMF) determined 8 source factors, 3 having a regional origin (sulfate-rich, nitrate-rich, marine) contributing to PM2.5 mass for 73-78%; and 5 a local one (road traffic, biomass combustion, metal industry background, local industry and dust) (22-27%). In addition, a HR-ToF-AMS (aerosol mass spectrometer) and a SMPS (particle sizer) were deployed during an intensive winter campaign, to gain further insight on OA composition and new particle formation, respectively. The application of PMF to the AMS OA mass spectra allowed identifying 5 source factors: hydrocarbon-like (15%), cooking-like (11%), oxidized biomass burning (25%), less- and more-oxidized oxygenated factors (16% and 33%, respectively). Combining the SMPS size distribution with the chemical speciation of the aerosols and precursor gases allowed the identification of nocturnal new particle formation (NPF) events associated to the formation of SIA, in particular AN.
7

Démixage d’images hyperspectrales en présence d’objets de petite taille / Spectral unmixing of hyperspectral images in the presence of small targets

Ravel, Sylvain 08 December 2017 (has links)
Cette thèse est consacrée au démixage en imagerie hyperspectrale en particulier dans le cas où des objets de petite taille sont présents dans la scène. Les images hyperspectrales contiennent une grande quantité d’information à la fois spectrale et spatiale, et chaque pixel peut être vu comme le spectre de réflexion de la zone imagée. Du fait de la faible résolution spatiale des capteurs le spectre de réflexion observé au niveau de chaque pixel est un mélange des spectres de réflexion de l’ensemble des composants imagés dans le pixel. Une problématique de ces images hyperspectrales est le démixage, qui consiste à décomposer l’image en une liste de spectres sources, appelés endmembers, correspondants aux spectres de réflexions des composants de la scène d’une part, et d’autre part la proportion de chacun de ces spectres source dans chaque pixel de l’image. De nombreuses méthodes de démixage existent mais leur efficacité reste amoindrie en présence de spectres sources dits rares (c’est-à-dire des spectres présents dans très peu de pixels, et souvent à un niveau subpixelique). Ces spectres rares correspondent à des composants présents en faibles quantités dans la scène et peuvent être vus comme des anomalies dont la détection est souvent cruciale pour certaines applications.Nous présentons dans un premier temps deux méthodes de détection des pixels rares dans une image, la première basée sur un seuillage de l’erreur de reconstruction après estimation des endmembers abondants, la seconde basée sur les coefficients de détails obtenus par la décomposition en ondelettes. Nous proposons ensuite une méthode de démixage adaptée au cas où une partie des endmembers sont connus a priori et montrons que cette méthode utilisée avec les méthodes de détection proposées permet le démixage des endmembers des pixels rares. Enfin nous étudions une méthode de rééchantillonnage basée sur la méthode du bootstrap pour amplifier le rôle de ces pixels rares et proposer des méthodes de démixage en présence d’objets de petite taille. / This thesis is devoted to the unmixing issue in hyperspectral images, especiallyin presence of small sized objects. Hyperspectral images contains an importantamount of both spectral and spatial information. Each pixel of the image canbe assimilated to the reflection spectra of the imaged scene. Due to sensors’ lowspatial resolution, the observed spectra are a mixture of the reflection spectraof the different materials present in the pixel. The unmixing issue consists inestimating those materials’ spectra, called endmembers, and their correspondingabundances in each pixel. Numerous unmixing methods have been proposed butthey fail when an endmembers is rare (that is to say an endmember present inonly a few of the pixels). We call rare pixels, pixels containing those endmembers.The presence of those rare endmembers can be seen as anomalies that we want todetect and unmix. In a first time, we present two detection methods to retrievethis anomalies. The first one use a thresholding criterion on the reconstructionerror from estimated dominant endmembers. The second one, is based on wavelettransform. Then we propose an unmixing method adapted when some endmembersare known a priori. This method is then used with the presented detectionmethod to propose an algorithm to unmix the rare pixels’ endmembers. Finally,we study the application of bootstrap resampling method to artificially upsamplerare pixels and propose unmixing methods in presence of small sized targets.
8

Méthodes d'apprentissage appliquées à la séparation de sources mono-canal

Augustin, Lefèvre 03 October 2012 (has links) (PDF)
Étant donne un mélange de plusieurs signaux sources, par exemple un morceau et plusieurs instruments, ou un entretien radiophonique et plusieurs interlocuteurs, la séparation de source mono-canal consiste a' estimer chacun des signaux sources a' partir d'un enregistrement avec un seul microphone. Puisqu'il y a moins de capteurs que de sources, il y a a priori une infinité de solutions sans rapport avec les sources originales. Il faut alors trouver quelle information supplémentaire permet de rendre le problème bien pose. Au cours des dix dernières années, la factorisation en matrices positives (NMF) est devenue un composant majeurs des systèmes de séparation de sources. En langage profane, la NMF permet de d'écrire un ensemble de signaux audio a ́ partir de combinaisons d' éléments sonores simples (les atomes), formant un dictionnaire. Les systèmes de séparation de sources reposent alors sur la capacité a trouver des atomes qui puissent être assignes de fa con univoque 'a chaque source sonore. En d'autres termes, ils doivent être interprétables. Nous proposons dans cette thèse trois contributions principales aux méthodes d'apprentissage de dictionnaire. La première est un critère de parcimonie par groupes adapte a la NMF lorsque la mesure de distorsion choisie est la divergence d'Itakura-Saito. Dans la plupart des signaux de musique on peut trouver de longs intervalles ou' seulement une source est active (des soli). Le critère de parcimonie par groupe que nous proposons permet de trouver automatiquement de tels segments et d'apprendre un dictionnaire adapte a chaque source. Ces dictionnaires permettent ensuite d'effectuer la tache de séparation dans les intervalles ou' les sources sont mélangées. Ces deux taches d'identification et de séparation sont effectuées simultanément en une seule passe de l'algorithme que nous proposons. Notre deuxième contribution est un algorithme en ligne pour apprendre le dictionnaire a grande échelle, sur des signaux de plusieurs heures, ce qui était impossible auparavant. L'espace mémoire requis par une NMF estimée en ligne est constant alors qu'il croit linéairement avec la taille des signaux fournis dans la version standard, ce qui est impraticable pour des signaux de plus d'une heure. Notre troisième contribution touche a' l'interaction avec l'utilisateur. Pour des signaux courts, l'apprentissage aveugle est particulièrement difficile, et l'apport d'information spécifique au signal traite est indispensable. Notre contribution est similaire à l'inpainting et permet de prendre en compte des annotations temps-fréquence. Elle repose sur l'observation que la quasi-totalite du spectro- gramme peut être divise en régions spécifiquement assignées a' chaque source. Nous d'éecrivons une extension de NMF pour prendre en compte cette information et discutons la possibilité d'inférer cette information automatiquement avec des outils d'apprentissage statistique simples.
9

High Performance Parallel Algorithms for Tensor Decompositions / Algorithmes Parallèles pour les Décompositions des Tenseurs

Kaya, Oguz 15 September 2017 (has links)
La factorisation des tenseurs est au coeur des méthodes d'analyse des données massives multidimensionnelles dans de nombreux domaines, dont les systèmes de recommandation, les graphes, les données médicales, le traitement du signal, la chimiométrie, et bien d'autres.Pour toutes ces applications, l'obtention rapide de la décomposition des tenseurs est cruciale pour pouvoir traiter manipuler efficacement les énormes volumes de données en jeu.L'objectif principal de cette thèse est la conception d'algorithmes pour la décomposition de tenseurs multidimensionnels creux, possédant de plusieurs centaines de millions à quelques milliards de coefficients non-nuls. De tels tenseurs sont omniprésents dans les applications citées plus haut.Nous poursuivons cet objectif via trois approches.En premier lieu, nous proposons des algorithmes parallèles à mémoire distribuée, comprenant des schémas de communication point-à-point optimisés, afin de réduire les coûts de communication. Ces algorithmes sont indépendants du partitionnement des éléments du tenseur et des matrices de faible rang. Cette propriété nous permet de proposer des stratégies de partitionnement visant à minimiser le coût de communication tout en préservant l'équilibrage de charge entre les ressources. Nous utilisons des techniques d'hypergraphes pour analyser les paramètres de calcul et de communication de ces algorithmes, ainsi que des outils de partitionnement d'hypergraphe pour déterminer des partitions à même d'offrir un meilleur passage à l'échelle. Deuxièmement, nous étudions la parallélisation sur plate-forme à mémoire partagée de ces algorithmes. Dans ce contexte, nous déterminons soigneusement les tâches de calcul et leur dépendances, et nous les exprimons en termes d'une structure de données idoine, et dont la manipulation permet de révéler le parallélisme intrinsèque du problème. Troisièmement, nous présentons un schéma de calcul en forme d'arbre binaire pour représenter les noyaux de calcul les plus coûteux des algorithmes, comme la multiplication du tenseur par un ensemble de vecteurs ou de matrices donnés. L'arbre binaire permet de factoriser certains résultats intermédiaires, et de les ré-utiliser au fil du calcul. Grâce à ce schéma, nous montrons comment réduire significativement le nombre et le coût des multiplications tenseur-vecteur et tenseur-matrice, rendant ainsi la décomposition du tenseur plus rapide à la fois pour la version séquentielle et la version parallèle des algorithmes.Enfin, le reste de la thèse décrit deux extensions sur des thèmes similaires. La première extension consiste à appliquer le schéma d'arbre binaire à la décomposition des tenseurs denses, avec une analyse précise de la complexité du problème et des méthodes pour trouver la structure arborescente qui minimise le coût total. La seconde extension consiste à adapter les techniques de partitionnement utilisées pour la décomposition des tenseurs creux à la factorisation des matrices non-négatives, problème largement étudié et pour lequel nous obtenons des algorithmes parallèles plus efficaces que les meilleurs actuellement connus.Tous les résultats théoriques de cette thèse sont accompagnés d'implémentations parallèles,aussi bien en mémoire partagée que distribuée. Tous les algorithmes proposés, avec leur réalisation sur plate-forme HPC, contribuent ainsi à faire de la décomposition de tenseurs un outil prometteur pour le traitement des masses de données actuelles et à venir. / Tensor factorization has been increasingly used to analyze high-dimensional low-rank data ofmassive scale in numerous application domains, including recommender systems, graphanalytics, health-care data analysis, signal processing, chemometrics, and many others.In these applications, efficient computation of tensor decompositions is crucial to be able tohandle such datasets of high volume. The main focus of this thesis is on efficient decompositionof high dimensional sparse tensors, with hundreds of millions to billions of nonzero entries,which arise in many emerging big data applications. We achieve this through three majorapproaches.In the first approach, we provide distributed memory parallel algorithms with efficientpoint-to-point communication scheme for reducing the communication cost. These algorithmsare agnostic to the partitioning of tensor elements and low rank decomposition matrices, whichallow us to investigate effective partitioning strategies for minimizing communication cost whileestablishing computational load balance. We use hypergraph-based techniques to analyze computational and communication requirements in these algorithms, and employ hypergraphpartitioning tools to find suitable partitions that provide much better scalability.Second, we investigate effective shared memory parallelizations of these algorithms. Here, we carefully determine unit computational tasks and their dependencies, and express them using aproper data structure that exposes the parallelism underneath.Third, we introduce a tree-based computational scheme that carries out expensive operations(involving the multiplication of the tensor with a set of vectors or matrices, found at the core ofthese algorithms) faster by factoring out and storing common partial results and effectivelyre-using them. With this computational scheme, we asymptotically reduce the number oftensor-vector and -matrix multiplications for high dimensional tensors, and thereby rendercomputing tensor decompositions significantly cheaper both for sequential and parallelalgorithms.Finally, we diversify this main course of research with two extensions on similar themes.The first extension involves applying the tree-based computational framework to computingdense tensor decompositions, with an in-depth analysis of computational complexity andmethods to find optimal tree structures minimizing the computational cost. The second workfocuses on adapting effective communication and partitioning schemes of our parallel sparsetensor decomposition algorithms to the widely used non-negative matrix factorization problem,through which we obtain significantly better parallel scalability over the state of the artimplementations.We point out that all theoretical results in the thesis are nicely corroborated by parallelexperiments on both shared-memory and distributed-memory platforms. With these fastalgorithms as well as their tuned implementations for modern HPC architectures, we rendertensor and matrix decomposition algorithms amenable to use for analyzing massive scaledatasets.
10

L'analyse probabiliste en composantes latentes et ses adaptations aux signaux musicaux : application à la transcription automatique de musique et à la séparation de sources / Probabilistic latent component analysis and its adaptation to musical signals : application to automatic music transcription and source separation

Fuentes, Benoît 14 March 2013 (has links)
La transcription automatique de musique polyphonique consiste à estimer automatiquernent les notes présentes dans un enregistrement via trois de leurs attributs : temps d'attaque, durée et hauteur. Pour traiter ce problème, il existe une classe de méthodes dont le principe est de modéliser un signal comme une somme d'éléments de base, porteurs d'informations symboliques. Parmi ces techniques d'analyse, on trouve l'analyse probabiliste en composantes latentes (PLCA). L'objet de cette thèse est de proposer des variantes et des améliorations de la PLCA afin qu'elle puisse mieux s'adapter aux signaux musicaux et ainsi mieux traiter le problème de la transcription. Pour cela, un premier angle d'approche est de proposer de nouveaux modèles de signaux, en lieu et place du modèle inhérent à la PLCA, suffisamment expressifs pour pouvoir s'adapter aux notes de musique possédant simultanément des variations temporelles de fréquence fondamentale et d'enveloppe spectrale. Un deuxième aspect du travail effectué est de proposer des outils permettant d'aider l'algorithme d'estimation des paramètres à converger vers des solutions significatives via l'incorporation de connaissances a priori sur les signaux à analyser, ainsi que d'un nouveau modèle dynamique. Tous les algorithmes ainsi imaginés sont appliqués à la tâche de transcription automatique. Nous voyons également qu'ils peuvent être directement utilisés pour la séparation de sources, qui consiste à séparer plusieurs sources d'un mélange, et nous proposons deux applications dans ce sens. / Automatic music transcription consists in automatically estimating the notes in a recording, through three attributes: onset time, duration and pitch. To address this problem, there is a class of methods which is based on the modeling of a signal as a sum of basic elements, carrying symbolic information. Among these analysis techniques, one can find the probabilistic latent component analysis (PLCA). The purpose of this thesis is to propose variants and improvements of the PLCA, so that it can better adapt to musical signals and th us better address the problem of transcription. To this aim, a first approach is to put forward new models of signals, instead of the inherent model 0 PLCA, expressive enough so they can adapt to musical notes having variations of both pitch and spectral envelope over time. A second aspect of this work is to provide tools to help the parameters estimation algorithm to converge towards meaningful solutions through the incorporation of prior knowledge about the signals to be analyzed, as weil as a new dynamic model. Ali the devised algorithms are applie to the task of automatic transcription. They can also be directly used for source separation, which consists in separating several sources from a mixture, and Iwo applications are put forward in this direction

Page generated in 0.1428 seconds