• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 13
  • 3
  • Tagged with
  • 38
  • 38
  • 28
  • 23
  • 22
  • 20
  • 18
  • 15
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Décomposition de spectrogrammes musicaux informée par des modèles de synthèse spectrale. Modélisation des variations temporelles dans les éléments sonores.

Hennequin, Romain 21 November 2011 (has links) (PDF)
Cette thèse propose de nouvelles méthodes de décomposition automatique de spectrogrammes de signaux musicaux. Les décompositions proposées sont issues de la factorisation en matrices non-négatives (NMF), puissante technique de réduction de rang réputée pour fournir une décomposition sur un petit nombre de motifs fréquentiels automatiquement extraits des données ayant généralement un sens perceptif. La NMF ne permet cependant pas de modéliser de façon efficace certaines variations temporelles d'éléments sonores non-stationnaires communément rencontrées dans la musique. Cette thèse propose donc d'introduire dans la NMF des modèles génératifs de spectrogrammes musicaux basés sur des modèles classiques de synthèse sonore afin de pouvoir prendre en compte deux types de variations courantes : les variations d'enveloppe spectrale (sons d'instruments à cordes métalliques libres...) et les variations de fréquence fondamentale (vibrato, prosodie...). L'introduction de modèles de synthèse simples dans la NMF permet de proposer des décompositions capables de prendre en compte ces variations : l'utilisation d'un modèle de synthèse source/ filtre permet de modéliser les variations spectrales de certains objets musicaux au cours du temps. L'utilisation d'un modèle d'atomes harmoniques paramétriques inspiré de la synthèse additive ou bien l'utilisation d'un modèle inspiré de la synthèse par table d'onde qui utilise des transformations d'un unique atome de base afin de recréer toute la tessiture de chaque instrument permettent de modéliser les variations de fréquence fondamentale. Une application de séparation de sources et une de transformation sélective du son sont également présentées.
32

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications

Pham, Viet Nga 18 April 2013 (has links) (PDF)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes.
33

Détection, localisation et quantification de déplacements par capteurs à fibre optique / Detection, localization and quantification of displacements thanks to optical fiber sensors

Buchoud, Edouard 13 October 2014 (has links)
Pour l’auscultation d’ouvrages, les capteurs à fibre optique sont généralement utilisés puisqu’ils présentent l’avantage de fournir des mesures réparties. Plus particulièrement, le capteur basé sur la technologie Brillouin permet d’acquérir un profil de fréquence Brillouin, sensible à la température et la déformation dans une fibre optique sur une dizaine de kilomètres avec un pas de l’ordre de la dizaine de centimètres. La première problématique est d’obtenir un profil centimétrique sur la même longueur d’auscultation. Nous y répondons en s’appuyant sur des méthodes de séparation de sources, de déconvolution et de résolution de problèmes inverses. Ensuite, nous souhaitons estimer la déformation athermique dans l’ouvrage. Pour cela, plusieurs algorithmes de filtrage adaptatif sont comparés. Finalement, un procédé pour quantifier le déplacement de l’ouvrage à partir des mesures de déformation est proposé. Toutes ces méthodes sont testés sur des données simulées et réelles acquises dans des conditions contrôlées. / For structural health monitoring, optical fiber sensors are mostly used thanks their capacity to provide distributed measurements. Based on the principle of Brillouin scattering, optical fiber sensors measure Brillouin frequency profile, sensitive to strain and temperature into the optical fiber, with a meter spatial resolution over several kilometers. The first problem is to obtain a centimeter spatial resolution with the same sensing length. To solve it, source separation, deconvolution and resolution of inverse problem methodologies are used. Then, the athermal strain into the structure is searched. Several algorithms based on adaptative filter are tested to correct the thermal effect on strain measurements. Finally, several methods are developed to quantify structure displacements from the athermal strain measurements. They have been tested on simulated and controlled-conditions data
34

Méthodes rapides de traitement d’images hyperspectrales. Application à la caractérisation en temps réel du matériau bois / Fast methods for hyperspectral images processing. Application to the real-time characterization of wood material

Nus, Ludivine 12 December 2019 (has links)
Cette thèse aborde le démélange en-ligne d’images hyperspectrales acquises par un imageur pushbroom, pour la caractérisation en temps réel du matériau bois. La première partie de cette thèse propose un modèle de mélange en-ligne fondé sur la factorisation en matrices non-négatives. À partir de ce modèle, trois algorithmes pour le démélange séquentiel en-ligne, fondés respectivement sur les règles de mise à jour multiplicatives, le gradient optimal de Nesterov et l’optimisation ADMM (Alternating Direction Method of Multipliers) sont développés. Ces algorithmes sont spécialement conçus pour réaliser le démélange en temps réel, au rythme d'acquisition de l'imageur pushbroom. Afin de régulariser le problème d’estimation (généralement mal posé), deux sortes de contraintes sur les endmembers sont utilisées : une contrainte de dispersion minimale ainsi qu’une contrainte de volume minimal. Une méthode pour l’estimation automatique du paramètre de régularisation est également proposée, en reformulant le problème de démélange hyperspectral en-ligne comme un problème d’optimisation bi-objectif. Dans la seconde partie de cette thèse, nous proposons une approche permettant de gérer la variation du nombre de sources, i.e. le rang de la décomposition, au cours du traitement. Les algorithmes en-ligne préalablement développés sont ainsi modifiés, en introduisant une étape d’apprentissage d’une bibliothèque hyperspectrale, ainsi que des pénalités de parcimonie permettant de sélectionner uniquement les sources actives. Enfin, la troisième partie de ces travaux consiste en l’application de nos approches à la détection et à la classification des singularités du matériau bois. / This PhD dissertation addresses the problem of on-line unmixing of hyperspectral images acquired by a pushbroom imaging system, for real-time characterization of wood. The first part of this work proposes an on-line mixing model based on non-negative matrix factorization. Based on this model, three algorithms for on-line sequential unmixing, using multiplicative update rules, the Nesterov optimal gradient and the ADMM optimization (Alternating Direction Method of Multipliers), respectively, are developed. These algorithms are specially designed to perform the unmixing in real time, at the pushbroom imager acquisition rate. In order to regularize the estimation problem (generally ill-posed), two types of constraints on the endmembers are used: a minimum dispersion constraint and a minimum volume constraint. A method for the unsupervised estimation of the regularization parameter is also proposed, by reformulating the on-line hyperspectral unmixing problem as a bi-objective optimization. In the second part of this manuscript, we propose an approach for handling the variation in the number of sources, i.e. the rank of the decomposition, during the processing. Thus, the previously developed on-line algorithms are modified, by introducing a hyperspectral library learning stage as well as sparse constraints allowing to select only the active sources. Finally, the third part of this work consists in the application of these approaches to the detection and the classification of the singularities of wood.
35

Reconstruction de phase par modèles de signaux : application à la séparation de sources audio / Phase recovery based on signal modeling : application to audio source separation

Magron, Paul 02 December 2016 (has links)
De nombreux traitements appliqués aux signaux audio travaillent sur une représentation Temps-Fréquence (TF) des données. Lorsque le résultat de ces algorithmes est un champ spectral d’amplitude, la question se pose, pour reconstituer un signal temporel, d’estimer le champ de phase correspondant. C’est par exemple le cas dans les applications de séparation de sources, qui estiment les spectrogrammes des sources individuelles à partir du mélange ; la méthode dite de filtrage de Wiener, largement utilisée en pratique, fournit des résultats satisfaisants mais est mise en défaut lorsque les sources se recouvrent dans le plan TF. Cette thèse aborde le problème de la reconstruction de phase de signaux dans le domaine TF appliquée à la séparation de sources audio. Une étude préliminaire révèle la nécessité de mettre au point de nouvelles techniques de reconstruction de phase pour améliorer la qualité de la séparation de sources. Nous proposons de baser celles-ci sur des modèles de signaux. Notre approche consiste à exploiter des informations issues de modèles sous-jacents aux données comme les mélanges de sinusoïdes. La prise en compte de ces informations permet de préserver certaines propriétés intéressantes, comme la continuité temporelle ou la précision des attaques. Nous intégrons ces contraintes dans des modèles de mélanges pour la séparation de sources, où la phase du mélange est exploitée. Les amplitudes des sources pourront être supposées connues, ou bien estimées conjointement dans un modèle inspiré de la factorisation en matrices non-négatives complexe. Enfin, un modèle probabiliste de sources à phase non-uniforme est mis au point. Il permet d’exploiter les à priori provenant de la modélisation de signaux et de tenir compte d’une incertitude sur ceux-ci. Ces méthodes sont testées sur de nombreuses bases de données de signaux de musique réalistes. Leurs performances, en termes de qualité des signaux estimés et de temps de calcul, sont supérieures à celles des méthodes traditionnelles. En particulier, nous observons une diminution des interférences entre sources estimées, et une réduction des artéfacts dans les basses fréquences, ce qui confirme l’intérêt des modèles de signaux pour la reconstruction de phase. / A variety of audio signal processing techniques act on a Time-Frequency (TF) representation of the data. When the result of those algorithms is a magnitude spectrum, it is necessary to reconstruct the corresponding phase field in order to resynthesize time-domain signals. For instance, in the source separation framework the spectrograms of the individual sources are estimated from the mixture ; the widely used Wiener filtering technique then provides satisfactory results, but its performance decreases when the sources overlap in the TF domain. This thesis addresses the problem of phase reconstruction in the TF domain for audio source separation. From a preliminary study we highlight the need for novel phase recovery methods. We therefore introduce new phase reconstruction techniques that are based on music signal modeling : our approach consists inexploiting phase information that originates from signal models such as mixtures of sinusoids. Taking those constraints into account enables us to preserve desirable properties such as temporal continuity or transient precision. We integrate these into several mixture models where the mixture phase is exploited ; the magnitudes of the sources are either assumed to be known, or jointly estimated in a complex nonnegative matrix factorization framework. Finally we design a phase-dependent probabilistic mixture model that accounts for model-based phase priors. Those methods are tested on a variety of realistic music signals. They compare favorably or outperform traditional source separation techniques in terms of signal reconstruction quality and computational cost. In particular, we observe a decrease in interferences between the estimated sources and a reduction of artifacts in the low-frequency components, which confirms the benefit of signal model-based phase reconstruction methods.
36

Méthodes Computationnelles en Géométrie de l'Information et Applications Temps Réel au Traitement du Signal Audio

Dessein, Arnaud 13 December 2012 (has links) (PDF)
Cette thèse propose des méthodes computationnelles nouvelles en géométrie de l'information, avec des applications temps réel au traitement du signal audio. Dans ce contexte, nous traitons en parallèle les problèmes applicatifs de la segmentation audio en temps réel, et de la transcription de musique polyphonique en temps réel. Nous abordons ces applications par le développement respectif de cadres théoriques pour la détection séquentielle de ruptures dans les familles exponentielles, et pour la factorisation en matrices non négatives avec des divergences convexes-concaves. D'une part, la détection séquentielle de ruptures est étudiée par l'intermédiaire de la géométrie de l'information dualement plate liée aux familles exponentielles. Nous développons notamment un cadre statistique générique et unificateur, reposant sur des tests d'hypothèses multiples à l'aide de rapports de vraisemblance généralisés exacts. Nous appliquons ce cadre à la conception d'un système modulaire pour la segmentation audio temps réel avec des types de signaux et de critères d'homogénéité arbitraires. Le système proposé contrôle le flux d'information audio au fur et à mesure qu'il se déroule dans le temps pour détecter des changements. D'autre part, nous étudions la factorisation en matrices non négatives avec des divergences convexes-concaves sur l'espace des mesures discrètes positives. En particulier, nous formulons un cadre d'optimisation générique et unificateur pour la factorisation en matrices non négatives, utilisant des bornes variationnelles par le biais de fonctions auxiliaires. Nous mettons ce cadre à profit en concevant un système temps réel de transcription de musique polyphonique avec un contrôle explicite du compromis fréquentiel pendant l'analyse. Le système développé décompose le signal musical arrivant au cours du temps sur un dictionnaire de modèles spectraux de notes. Ces contributions apportent des pistes de réflexion et des perspectives de recherche intéressantes dans le domaine du traitement du signal audio, et plus généralement de l'apprentissage automatique et du traitement du signal, dans le champ relativement jeune mais néanmoins fécond de la géométrie de l'information computationnelle.
37

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications / DC programming and DCA for nonconvex optimization/ global optimization in mixed integer programming : Codes and applications

Pham, Viet Nga 18 April 2013 (has links)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes. / Based on theoretical and algorithmic tools of DC programming and DCA, the research in this thesis focus on the local and global approaches for non convex optimization and global mixed integer optimization. The thesis consists of 5 chapters. The first chapter presents fundamentals of DC programming and DCA, and techniques of Branch and Bound method (B&B) for global optimization (using the DC relaxation technique for calculating lower bounds of the optimal value). It shall include results concerning the exact penalty technique in mixed integer programming. The second chapter is devoted of a DCA method for solving a class of NP-hard nonconvex nonlinear mixed integer programs. These nonconvex problems are firstly reformulated as DC programs via penalty techniques in DC programming so that the resulting DC programs are effectively solved by DCA and B&B well adapted. As a first application in financial optimization, we modeled the problem pf portfolio selection under concave transaction costs and applied DCA and B&B to its solutions. In the next chapter we study the modeling of the problem of minimization of nonconvex discontinuous transaction costs in portfolio selection in two forms: the first is a DC program obtained by approximating the objective function of the original problem by a DC polyhedral function and the second is an equivalent mixed 0-1 DC program. And we present DCA, B&B algorithm, and a combined DCA-B&B algorithm for their solutions. Chapter 4 studied the exact solution for the multi-objective mixed zero-one linear programming problem and presents two practical applications of proposed method. We are interested int the last chapter two challenging problems: the linear integer least squares problem and the Nonnegative Mattrix Factorization problem (NMF). The NMF method is particularly important because of its many various applications of the first are in telecommunications. The numerical simulations show the robustness, speed (thus scalability), performance, and the globality of DCA in comparison to existent methods.
38

Fusion pour la séparation de sources audio / Fusion for audio source separation

Jaureguiberry, Xabier 16 June 2015 (has links)
La séparation aveugle de sources audio dans le cas sous-déterminé est un problème mathématique complexe dont il est aujourd'hui possible d'obtenir une solution satisfaisante, à condition de sélectionner la méthode la plus adaptée au problème posé et de savoir paramétrer celle-ci soigneusement. Afin d'automatiser cette étape de sélection déterminante, nous proposons dans cette thèse de recourir au principe de fusion. L'idée est simple : il s'agit, pour un problème donné, de sélectionner plusieurs méthodes de résolution plutôt qu'une seule et de les combiner afin d'en améliorer la solution. Pour cela, nous introduisons un cadre général de fusion qui consiste à formuler l'estimée d'une source comme la combinaison de plusieurs estimées de cette même source données par différents algorithmes de séparation, chaque estimée étant pondérée par un coefficient de fusion. Ces coefficients peuvent notamment être appris sur un ensemble d'apprentissage représentatif du problème posé par minimisation d'une fonction de coût liée à l'objectif de séparation. Pour aller plus loin, nous proposons également deux approches permettant d'adapter les coefficients de fusion au signal à séparer. La première formule la fusion dans un cadre bayésien, à la manière du moyennage bayésien de modèles. La deuxième exploite les réseaux de neurones profonds afin de déterminer des coefficients de fusion variant en temps. Toutes ces approches ont été évaluées sur deux corpus distincts : l'un dédié au rehaussement de la parole, l'autre dédié à l'extraction de voix chantée. Quelle que soit l'approche considérée, nos résultats montrent l'intérêt systématique de la fusion par rapport à la simple sélection, la fusion adaptative par réseau de neurones se révélant être la plus performante. / Underdetermined blind source separation is a complex mathematical problem that can be satisfyingly resolved for some practical applications, providing that the right separation method has been selected and carefully tuned. In order to automate this selection process, we propose in this thesis to resort to the principle of fusion which has been widely used in the related field of classification yet is still marginally exploited in source separation. Fusion consists in combining several methods to solve a given problem instead of selecting a unique one. To do so, we introduce a general fusion framework in which a source estimate is expressed as a linear combination of estimates of this same source given by different separation algorithms, each source estimate being weighted by a fusion coefficient. For a given task, fusion coefficients can then be learned on a representative training dataset by minimizing a cost function related to the separation objective. To go further, we also propose two ways to adapt the fusion coefficients to the mixture to be separated. The first one expresses the fusion of several non-negative matrix factorization (NMF) models in a Bayesian fashion similar to Bayesian model averaging. The second one aims at learning time-varying fusion coefficients thanks to deep neural networks. All proposed methods have been evaluated on two distinct corpora. The first one is dedicated to speech enhancement while the other deals with singing voice extraction. Experimental results show that fusion always outperform simple selection in all considered cases, best results being obtained by adaptive time-varying fusion with neural networks.

Page generated in 0.1435 seconds