• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalarization and stability in multi-objective optimization / Stabilité et scalarisation en programmation multi-objectif

Zamani, Moslem 12 July 2016 (has links)
Cette thèse porte sur trois questions qui se posent en optimisation multi-objectif. Dansun premier temps, nous étudions l’existence de solutions efficaces via des techniquesde scalarisation. On étend le théorème de Benson du cas convexe à un cas général.De plus, nous examinons d’autres techniques de scalarisation. Dans un second temps,nous abordons la question de robustesse. Nous examinons les concepts proposés dansla littérature sur le sujet. On étend au cas d’optimisation multi-objectif non-linéairela définition de Georgiev et ses collaborateurs. Quelques conditions nécessaires etsuffisantes pour obtenir une solution robuste moyennant des hypothèses appropriéessont données. Les relations entre cette notion de robustesse et certaines définitionsmentionnées sont mises en évidence. Deux types de modifications des fonctions objectifsont traités et les relations entre les solutions faibles/propres/ robustes efficacessont établies. Le dernier chapitre est consacré à l’analyse de sensibilité et de stabilitéen optimisation multi-objectif paramétrée. On montre sous des conditions faibles quela multi-application de l’ensemble des solutions réalisables et des valeurs réalisablessont strictement semi-différentiables. On donne quelques conditions suffisantes pourla semi-différentiabilité de l’ensemble efficace et des valeurs efficaces. De plus, nousétudions la pseudo-Lipschitz continuité des multi-applications ci dessus citées. / In this thesis, three crucial questions arising in multi-objective optimization are investigated.First, the existence of properly efficient solutions via scalarization toolsis studied. A basic theorem credited to Benson is extended from the convex caseto the general case. Some further scalarization techniques are also discussed. Thesecond part of the thesis is devoted to robustness. Various notions from the literatureare briefly reviewed. Afterwards, a norm-based definition given by Georgiev, Lucand Pardalos is generalized to nonlinear multi-objective optimization. Necessary andsufficient conditions for robust solutions under appropriate assumptions are given.Relationships between new robustness notion and some known ones are highlighted.Two kinds of modifications in the objective functions are dealt with and relationshipsbetween the weak/proper/robust efficient solutions of the problems, before and afterthe perturbation, are established. Finally, we discuss the sensitivity analysis andstability in parametrized multi-objective optimization. Strict semi-differentiability ofset-valued mappings of feasible sets and feasible values is proved under appropriateassumptions. Furthermore, some sufficient conditions for semi-differentiability of efficientsets and efficient values are presented. Finally, pseudo-Lipschitz continuity ofaforementioned set-valued mappings is investigated
2

Optimisation multicritère : fondements et concepts

Othmani, Imed 20 May 1998 (has links) (PDF)
L'optimisation multicritère consiste à choisir, en présence de critères multiples, une (des) alternative(s) parmi un nombre infini d'alternatives qui varient généralement dans un domaine continu. Depuis une trentaine d'années, le domaine de l'optimisation multicritère connaît une évolution importante. Cette évolution s'est traduite par le développement d'un grand nombre de méthodes. La multitude des méthodes d'optimisation multicritère est perçue comme une richesse incontestable de ce domaine. D'ailleurs, certains la justifient par la diversité des problèmes ainsi que par l'existence de différentes approches de résolution possibles et légitimes de ces problèmes. Cependant, ce phénomène révèle aussi des faiblesses certaines. En effet, la plupart de ces méthodes manquent de fondements axiomatisés, et il est difficile de choisir la méthode à appliquer face à une situation donnée. Le travail présenté dans ce mémoire propose une approche axiomatisée d'optimisation multicritère. Cette approche est fondée sur des concepts tels que l'efficacité partielle qui sont motivés et justifiés par des interprétation intelligibles. Elle est Robuste par rapport aux paramètres utilisés, opérationnelle, et évolutive. Elle peut être utilisée dans la résolution de différentes situations multicritères tels que les problèmes comportant des critères nombreux et incommensurables et les problèmes de décisions publiques.
3

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications

Pham, Viet Nga 18 April 2013 (has links) (PDF)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes.
4

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications / DC programming and DCA for nonconvex optimization/ global optimization in mixed integer programming : Codes and applications

Pham, Viet Nga 18 April 2013 (has links)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes. / Based on theoretical and algorithmic tools of DC programming and DCA, the research in this thesis focus on the local and global approaches for non convex optimization and global mixed integer optimization. The thesis consists of 5 chapters. The first chapter presents fundamentals of DC programming and DCA, and techniques of Branch and Bound method (B&B) for global optimization (using the DC relaxation technique for calculating lower bounds of the optimal value). It shall include results concerning the exact penalty technique in mixed integer programming. The second chapter is devoted of a DCA method for solving a class of NP-hard nonconvex nonlinear mixed integer programs. These nonconvex problems are firstly reformulated as DC programs via penalty techniques in DC programming so that the resulting DC programs are effectively solved by DCA and B&B well adapted. As a first application in financial optimization, we modeled the problem pf portfolio selection under concave transaction costs and applied DCA and B&B to its solutions. In the next chapter we study the modeling of the problem of minimization of nonconvex discontinuous transaction costs in portfolio selection in two forms: the first is a DC program obtained by approximating the objective function of the original problem by a DC polyhedral function and the second is an equivalent mixed 0-1 DC program. And we present DCA, B&B algorithm, and a combined DCA-B&B algorithm for their solutions. Chapter 4 studied the exact solution for the multi-objective mixed zero-one linear programming problem and presents two practical applications of proposed method. We are interested int the last chapter two challenging problems: the linear integer least squares problem and the Nonnegative Mattrix Factorization problem (NMF). The NMF method is particularly important because of its many various applications of the first are in telecommunications. The numerical simulations show the robustness, speed (thus scalability), performance, and the globality of DCA in comparison to existent methods.

Page generated in 0.1406 seconds