• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Techniques d'optimisation déterministe et stochastique pour la résolution de problèmes difficiles en cryptologie

Bouallagui, Sarra 05 July 2010 (has links) (PDF)
Cette thèse s'articule autour des fonctions booléennes liées à la cryptographie et la cryptanalyse de certains schémas d'identification. Les fonctions booléennes possèdent des propriétés algébriques fréquemment utilisées en cryptographie pour constituer des S-Boxes (tables de substitution).Nous nous intéressons, en particulier, à la construction de deux types de fonctions : les fonctions courbes et les fonctions équilibrées de haut degré de non-linéarité.Concernant la cryptanalyse, nous nous focalisons sur les techniques d'identification basées sur les problèmes de perceptron et de perceptron permuté. Nous réalisons une nouvelle attaque sur le schéma afin de décider de sa faisabilité.Nous développons ici des nouvelles méthodes combinant l'approche déterministe DCA (Difference of Convex functions Algorithm) et heuristique (recuit simulé, entropie croisée, algorithmes génétiques...). Cette approche hybride, utilisée dans toute cette thèse, est motivée par les résultats intéressants de la programmation DC.
2

Techniques d'optimisation déterministe et stochastique pour la résolution de problèmes difficiles en cryptologie / Deterministic and stochastic optimization techniques for hard problems in cryptology

Bouallagui, Sarra 05 July 2010 (has links)
Cette thèse s'articule autour des fonctions booléennes liées à la cryptographie et la cryptanalyse de certains schémas d'identification. Les fonctions booléennes possèdent des propriétés algébriques fréquemment utilisées en cryptographie pour constituer des S-Boxes (tables de substitution).Nous nous intéressons, en particulier, à la construction de deux types de fonctions : les fonctions courbes et les fonctions équilibrées de haut degré de non-linéarité.Concernant la cryptanalyse, nous nous focalisons sur les techniques d'identification basées sur les problèmes de perceptron et de perceptron permuté. Nous réalisons une nouvelle attaque sur le schéma afin de décider de sa faisabilité.Nous développons ici des nouvelles méthodes combinant l'approche déterministe DCA (Difference of Convex functions Algorithm) et heuristique (recuit simulé, entropie croisée, algorithmes génétiques...). Cette approche hybride, utilisée dans toute cette thèse, est motivée par les résultats intéressants de la programmation DC. / In cryptography especially in block cipher design, boolean functions are the basic elements.A cryptographic function should have high non-linearity as it can be attacked by linear method. There are three goals for the research presented in this thesis :_ Finding a new construction algorithm for the highest possible nonlinear boolean functions in the even dimension, that is bent functions, based on a detreministic model._ Finding highly non linear boolean functions._ Cryptanalysing an identification scheme based on the perceptron problem.Optimisation heuristic algorithms (Genetic algorithm and simulated annealing) and a deterministicone based on DC programming (DCA) were used together.
3

La programmation DC et la méthode Cross-Entropy pour certaines classes de problèmes en finance, affectation et recherche d'informations : codes et simulations numériques

Nguyen, Duc Manh 24 February 2012 (has links) (PDF)
La présente thèse a pour objectif principal de développer des approches déterministes et heuristiques pour résoudre certaines classes de problèmes d'optimisation en Finance, Affectation et Recherche d'Informations. Il s'agit des problèmes d'optimisation non convexe de grande dimension. Nos approches sont basées sur la programmation DC&DCA et la méthode Cross-Entropy (CE). Grâce aux techniques de formulation/reformulation, nous avons donné la formulation DC des problèmes considérés afin d'obtenir leurs solutions en utilisant DCA. En outre, selon la structure des ensembles réalisables de problèmes considérés, nous avons conçu des familles appropriées de distributions pour que la méthode Cross-Entropy puisse être appliquée efficacement. Toutes ces méthodes proposées ont été mises en œuvre avec MATLAB, C/C++ pour confirmer les aspects pratiques et enrichir notre activité de recherche.
4

Programmation DC et DCA pour la résolution de certaines classes des problèmes dans les systèmes de transport et de communication

Ta, Anh Son 22 June 2012 (has links) (PDF)
Cette thèse a pour but de développer des approches déterministes et heuristiques pour résoudre certaines classes des problèmes d'optimisation en télécommunication et la mobilité d'un réseau de transport : problèmes de routage, problèmes de covoiturage, problèmes de contrôle de l'alimentation dans un réseau sans fil, problèmes d'équilibrage du spectre dans les réseaux DSL. Il s'agit des problèmes d'optimisation non convexe de très grande taille. Nos approches sont basées sur la programmation DC&DCA, méthode de décomposition proximale et la méthode d'étiquetage des graphes. Grâce aux techniques de formulation/reformulation et de pénalité exacte, nous avons établi des programmes DC équivalents en vue de leur résolution par DCA. Selon la structure de ces problèmes, on peut fournir des décompositions DC appropriées ou de bons points initiaux de DCA. Nos méthodes ont été programmées sous MATLAB, C/C++. Ils montrent la performance de nos algorithmes par rapport à des méthodes existantes.
5

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications

Pham, Viet Nga 18 April 2013 (has links) (PDF)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes.
6

La programmation DC et la méthode Cross-Entropy pour certaines classes de problèmes en finance, affectation et recherche d’informations : codes et simulations numériques / The DC programming and the cross- entropy method for some classes of problems in finance, assignment and search theory

Nguyen, Duc Manh 24 February 2012 (has links)
La présente thèse a pour objectif principal de développer des approches déterministes et heuristiques pour résoudre certaines classes de problèmes d'optimisation en Finance, Affectation et Recherche d’Informations. Il s’agit des problèmes d’optimisation non convexe de grande dimension. Nos approches sont basées sur la programmation DC&DCA et la méthode Cross-Entropy (CE). Grâce aux techniques de formulation/reformulation, nous avons donné la formulation DC des problèmes considérés afin d’obtenir leurs solutions en utilisant DCA. En outre, selon la structure des ensembles réalisables de problèmes considérés, nous avons conçu des familles appropriées de distributions pour que la méthode Cross-Entropy puisse être appliquée efficacement. Toutes ces méthodes proposées ont été mises en œuvre avec MATLAB, C/C++ pour confirmer les aspects pratiques et enrichir notre activité de recherche. / In this thesis we focus on developing deterministic and heuristic approaches for solving some classes of optimization problems in Finance, Assignment and Search Information. They are large-scale nonconvex optimization problems. Our approaches are based on DC programming & DCA and the Cross-Entropy method. Due to the techniques of formulation/reformulation, we have given the DC formulation of considered problems such that we can use DCA to obtain their solutions. Also, depending on the structure of feasible sets of considered problems, we have designed appropriate families of distributions such that the Cross-Entropy method could be applied efficiently. All these proposed methods have been implemented with MATLAB, C/C++ to confirm the practical aspects and enrich our research works.
7

Programmation DC et DCA pour la résolution de certaines classes des problèmes dans les systèmes de transport et de communication / DC programming and DCA for solving some classes of problems in transportation and communication systemes

Ta, Anh Son 22 June 2012 (has links)
Cette thèse a pour but de développer des approches déterministes et heuristiques pour résoudre certaines classes des problèmes d'optimisation en télécommunication et la mobilité d'un réseau de transport : problèmes de routage, problèmes de covoiturage, problèmes de contrôle de l'alimentation dans un réseau sans fil, problèmes d'équilibrage du spectre dans les réseaux DSL. Il s'agit des problèmes d'optimisation non convexe de très grande taille. Nos approches sont basées sur la programmation DC&DCA, méthode de décomposition proximale et la méthode d'étiquetage des graphes. Grâce aux techniques de formulation/reformulation et de pénalité exacte, nous avons établi des programmes DC équivalents en vue de leur résolution par DCA. Selon la structure de ces problèmes, on peut fournir des décompositions DC appropriées ou de bons points initiaux de DCA. Nos méthodes ont été programmées sous MATLAB, C/C++. Ils montrent la performance de nos algorithmes par rapport à des méthodes existantes. / In this thesis, we focus on developing deterministic and heuristic approaches for solving some classes of optimization problems in Telecommunication and Mobility & Transport domain: Routing problems, Car pooloing problems, Power control problems in wireless network, Optimal spectrum balancing problems in DSL networks. They are large-scale nonconvex optimization problems. Our methodologies are focus on DC programming and DCA, Proximal decomposition method and Labeling method in graph theory. They are well-known as powerful tools in optimization. The considered problems were reformulated using the DC formulation/reformulation and exact penalty techniques and the DCA was used to obtain the solution. Also, depending on the structure of considered problems, we can provide appropriate DE decompositions or good initial points for DCA. All these proposed methods have been implemented with MATLAB, C/C++ to confirm the practical aspects and enhance our research works.
8

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications / DC programming and DCA for nonconvex optimization/ global optimization in mixed integer programming : Codes and applications

Pham, Viet Nga 18 April 2013 (has links)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes. / Based on theoretical and algorithmic tools of DC programming and DCA, the research in this thesis focus on the local and global approaches for non convex optimization and global mixed integer optimization. The thesis consists of 5 chapters. The first chapter presents fundamentals of DC programming and DCA, and techniques of Branch and Bound method (B&B) for global optimization (using the DC relaxation technique for calculating lower bounds of the optimal value). It shall include results concerning the exact penalty technique in mixed integer programming. The second chapter is devoted of a DCA method for solving a class of NP-hard nonconvex nonlinear mixed integer programs. These nonconvex problems are firstly reformulated as DC programs via penalty techniques in DC programming so that the resulting DC programs are effectively solved by DCA and B&B well adapted. As a first application in financial optimization, we modeled the problem pf portfolio selection under concave transaction costs and applied DCA and B&B to its solutions. In the next chapter we study the modeling of the problem of minimization of nonconvex discontinuous transaction costs in portfolio selection in two forms: the first is a DC program obtained by approximating the objective function of the original problem by a DC polyhedral function and the second is an equivalent mixed 0-1 DC program. And we present DCA, B&B algorithm, and a combined DCA-B&B algorithm for their solutions. Chapter 4 studied the exact solution for the multi-objective mixed zero-one linear programming problem and presents two practical applications of proposed method. We are interested int the last chapter two challenging problems: the linear integer least squares problem and the Nonnegative Mattrix Factorization problem (NMF). The NMF method is particularly important because of its many various applications of the first are in telecommunications. The numerical simulations show the robustness, speed (thus scalability), performance, and the globality of DCA in comparison to existent methods.

Page generated in 0.1406 seconds