• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les multiplicateurs temps-fréquence : Applications à l’analyse et la synthèse de signaux sonores et musicaux

Olivero, Anaik 02 May 2012 (has links)
Cette thèse s'inscrit dans le contexte de l'analyse/transformation/synthèse des signaux audio utilisant des représentations temps-fréquence, de type transformation de Gabor. Dans ce contexte, la complexité des transformations permettant de relier des sons peut être modélisée au moyen de multiplicateurs de Gabor, opérateurs de signaux linéaires caractérisés par une fonction de transfert temps-fréquence, à valeurs complexes, que l'on appelle masque de Gabor. Les multiplicateurs de Gabor permettent deformaliser le concept de filtrage dans le plan temps-fréquence. En agissant de façon multiplicative dans le plan temps-fréquence, ils sont a priori bien adaptés pour réaliser des transformations sonores telles que des modifications de timbre des sons. Dans un premier temps, ce travail de thèses intéresse à la modélisation du problème d'estimation d'un masque de Gabor entre deux signaux donnés et la mise en place de méthodes de calculs efficaces permettant de résoudre le problème. Le multiplicateur de Gabor entre deux signaux n'est pas défini de manière unique et les techniques d'estimation proposées de construire des multiplicateurs produisant des signaux sonores de qualité satisfaisante. Dans un second temps, nous montrons que les masques de Gabor contiennent une information pertinente capable d'établir une classification des signaux,et proposons des stratégies permettant de localiser automatiquement les régions temps-fréquence impliquées dans la différentiation de deux classes de signaux. Enfin, nous montrons que les multiplicateurs de Gabor constituent tout un panel de transformations sonores entre deux sons, qui, dans certaines situations, peuvent être guidées par des descripteurs de timbre / Analysis/Transformation/Synthesis is a generalparadigm in signal processing, that aims at manipulating or generating signalsfor practical applications. This thesis deals with time-frequencyrepresentations obtained with Gabor atoms. In this context, the complexity of a soundtransformation can be modeled by a Gabor multiplier. Gabormultipliers are linear diagonal operators acting on signals, andare characterized by a time-frequency transfer function of complex values, called theGabor mask. Gabor multipliers allows to formalize the conceptof filtering in the time-frequency domain. As they act by multiplying in the time-frequencydomain, they are "a priori'' well adapted to producesound transformations like timbre transformations. In a first part, this work proposes to model theproblem of Gabor mask estimation between two given signals,and provides algorithms to solve it. The Gabor multiplier between two signals is not uniquely defined and the proposed estimationstrategies are able to generate Gabor multipliers that produce signalswith a satisfied sound quality. In a second part, we show that a Gabor maskcontain a relevant information, as it can be viewed asa time-frequency representation of the difference oftimbre between two given sounds. By averaging the energy contained in a Gabor mask, we obtain a measure of this difference that allows to discriminate different musical instrumentsounds. We also propose strategies to automaticallylocalize the time-frequency regions responsible for such a timbre dissimilarity between musicalinstrument classes. Finally, we show that the Gabor multipliers can beused to construct a lot of sounds morphing trajectories,and propose an extension
2

Estimation conjointe d'information de contenu musical d'un signal audio

Papadopoulos, Hélène 02 July 2010 (has links) (PDF)
Depuis quelques années, nous assistons à l'augmentation croissante de gigantesques collections de musique en ligne. Ce phénomène a attiré l'attention de nombreux chercheurs. En effet, le besoin urgent de développer des outils et des méthodes qui permettent d'interagir avec ces énormes bibliothèques de musique numérique pose des défis scientifiques complexes. Le domaine de la recherche d'information musicale (Music Information Retrieval, MIR) est ainsi devenu très actif depuis une dizaine d'années. Ce domaine général inclut celui de l'indexation musicale dans lequel s'inscrit cette thèse qui a pour but d'aider au stockage, à la diffusion et la consultation des gigantesques collections de musique en ligne. Ce domaine ouvre de nombreuses perspectives pour l'industrie et la recherche liées aux activités multimédia. Dans cette thèse, nous nous intéressons au problème de l'extraction automatique d'informations de contenu d'un signal audio de musique. La plupart des travaux existants abordent ce problème en considérant les attributs musicaux de manière indépendante les uns vis-à-vis des autres. Cependant les morceaux de musique sont extrèmement structurés du point de vue de l'harmonie et du rythme et leur estimation devrait se faire en tenant compte du contexte musical, comme le fait un musicien lorsqu'il analyse un morceau de musique. Nous nous concentrons sur trois descripteurs musicaux liés aux structures harmoniques, métriques et tonales d'un morceau de musique. Plus précisément, nous cherchons à en estimer la progression des accords, les premiers temps et la tonalité. L'originalité de notre travail consiste à construire un modèle qui permet d'estimer de manière conjointe ces trois attributs musicaux. Notre objectif est de montrer que l'estimation des divers descripteurs musicaux est meilleure si on tient compte de leurs dépendances mutuelles que si on les estime de manière indépendante. Nous proposons au cours de ce travail un ensemble de protocoles de comparaison, de métriques de performances et de nouvelles bases de données de test afin de pouvoir évaluer les différentes méthodes étudiées. Afin de valider notre approche, nous présentons également les résultats de nos participations à des campagnes d'évaluation internationales. Dans un premier temps, nous examinons plusieurs représentations typiques du signal audio afin de choisir celle qui est la plus appropriée à l'analyse du contenu harmonique d'un morceau de musique. Nous explorons plusieurs méthodes qui permettent d'extraire un chromagram du signal et les comparons à travers un protocole d'évaluation original et une nouvelle base de données que nous avons annotée. Nous détaillons et expliquons les raisons qui nous ont amenés à choisir la représentation que nous utilisons dans notre modèle. Dans notre modèle, les accords sont considérés comme un attribut central autour duquel les autres descripteurs musicaux s'organisent. Nous étudions le problème de l'estimation automatique de la suite des accords d'un morceau de musique audio en utilisant les _chromas_ comme observations du signal. Nous proposons plusieurs méthodes basées sur les modèles de Markov cachés (hidden Markov models, HMM), qui permettent de prendre en compte des éléments de la théorie musicale, le résultat d'expériences cognitives sur la perception de la tonalité et l'effet des harmoniques des notes de musique. Les différentes méthodes sont évaluées et comparées pour la première fois sur une grande base de données composée de morceaux de musique populaire. Nous présentons ensuite une nouvelle approche qui permet d'estimer de manière simultanée la progression des accords et les premiers temps d'un signal audio de musique. Pour cela, nous proposons une topologie spécifique de HMM qui nous permet de modéliser la dépendance des accords par rapport à la structure métrique d'un morceau. Une importante contribution est que notre modèle peut être utilisé pour des structures métriques complexes présentant par exemple l'insertion ou l'omission d'un temps, ou des changements dans la signature rythmique. Le modèle proposé est évalué sur un grand nombre de morceaux de musique populaire qui présentent des structures métriques variées. Nous comparons les résultats d'un modèle semi-automatique, dans lequel nous utilisons les positions des temps annotées manuellement, avec ceux obtenus par un modèle entièrement automatique où la position des temps est estimée directement à partir du signal. Enfin, nous nous penchons sur la question de la tonalité. Nous commençons par nous intéresser au problème de l'estimation de la tonalité principale d'un morceau de musique. Nous étendons le modèle présenté ci-dessus à un modèle qui permet d'estimer simultanément la progression des accords, les premiers temps et la tonalité principale. Les performances du modèle sont évaluées à travers des exemples choisis dans la musique populaire. Nous nous tournons ensuite vers le problème plus complexe de l'estimation de la tonalité locale d'un morceau de musique. Nous proposons d'aborder ce problème en combinant et en étendant plusieurs approches existantes pour l'estimation de la tonalité principale. La spécificité de notre approche est que nous considérons la dépendance de la tonalité locale par rapport aux structures harmonique et métrique. Nous évaluons les résultats de notre modèle sur une base de données originale composée de morceaux de musique classique que nous avons annotés.
3

Learning representations for robust audio-visual scene analysis / Apprentissage de représentations pour l'analyse robuste de scènes audiovisuelles

Parekh, Sanjeel 18 March 2019 (has links)
L'objectif de cette thèse est de concevoir des algorithmes qui permettent la détection robuste d’objets et d’événements dans des vidéos en s’appuyant sur une analyse conjointe de données audio et visuelle. Ceci est inspiré par la capacité remarquable des humains à intégrer les caractéristiques auditives et visuelles pour améliorer leur compréhension de scénarios bruités. À cette fin, nous nous appuyons sur deux types d'associations naturelles entre les modalités d'enregistrements audiovisuels (réalisés à l'aide d'un seul microphone et d'une seule caméra), à savoir la corrélation mouvement/audio et la co-occurrence apparence/audio. Dans le premier cas, nous utilisons la séparation de sources audio comme application principale et proposons deux nouvelles méthodes dans le cadre classique de la factorisation par matrices non négatives (NMF). L'idée centrale est d'utiliser la corrélation temporelle entre l'audio et le mouvement pour les objets / actions où le mouvement produisant le son est visible. La première méthode proposée met l'accent sur le couplage flexible entre les représentations audio et de mouvement capturant les variations temporelles, tandis que la seconde repose sur la régression intermodale. Nous avons séparé plusieurs mélanges complexes d'instruments à cordes en leurs sources constituantes en utilisant ces approches.Pour identifier et extraire de nombreux objets couramment rencontrés, nous exploitons la co-occurrence apparence/audio dans de grands ensembles de données. Ce mécanisme d'association complémentaire est particulièrement utile pour les objets où les corrélations basées sur le mouvement ne sont ni visibles ni disponibles. Le problème est traité dans un contexte faiblement supervisé dans lequel nous proposons un framework d’apprentissage de représentation pour la classification robuste des événements audiovisuels, la localisation des objets visuels, la détection des événements audio et la séparation de sources.Nous avons testé de manière approfondie les idées proposées sur des ensembles de données publics. Ces expériences permettent de faire un lien avec des phénomènes intuitifs et multimodaux que les humains utilisent dans leur processus de compréhension de scènes audiovisuelles. / The goal of this thesis is to design algorithms that enable robust detection of objectsand events in videos through joint audio-visual analysis. This is motivated by humans’remarkable ability to meaningfully integrate auditory and visual characteristics forperception in noisy scenarios. To this end, we identify two kinds of natural associationsbetween the modalities in recordings made using a single microphone and camera,namely motion-audio correlation and appearance-audio co-occurrence.For the former, we use audio source separation as the primary application andpropose two novel methods within the popular non-negative matrix factorizationframework. The central idea is to utilize the temporal correlation between audio andmotion for objects/actions where the sound-producing motion is visible. The firstproposed method focuses on soft coupling between audio and motion representationscapturing temporal variations, while the second is based on cross-modal regression.We segregate several challenging audio mixtures of string instruments into theirconstituent sources using these approaches.To identify and extract many commonly encountered objects, we leverageappearance–audio co-occurrence in large datasets. This complementary associationmechanism is particularly useful for objects where motion-based correlations are notvisible or available. The problem is dealt with in a weakly-supervised setting whereinwe design a representation learning framework for robust AV event classification,visual object localization, audio event detection and source separation.We extensively test the proposed ideas on publicly available datasets. The experimentsdemonstrate several intuitive multimodal phenomena that humans utilize on aregular basis for robust scene understanding.
4

Apprentissage automatique de caractéristiques audio : application à la génération de listes de lecture thématiques / Machine learning algorithms applied to audio features analysis : application in the automatic generation of thematic musical playlists

Bayle, Yann 19 June 2018 (has links)
Ce mémoire de thèse de doctorat présente, discute et propose des outils de fouille automatique de mégadonnées dans un contexte de classification supervisée musical.L'application principale concerne la classification automatique des thèmes musicaux afin de générer des listes de lecture thématiques.Le premier chapitre introduit les différents contextes et concepts autour des mégadonnées musicales et de leur consommation.Le deuxième chapitre s'attelle à la description des bases de données musicales existantes dans le cadre d'expériences académiques d'analyse audio.Ce chapitre introduit notamment les problématiques concernant la variété et les proportions inégales des thèmes contenus dans une base, qui demeurent complexes à prendre en compte dans une classification supervisée.Le troisième chapitre explique l'importance de l'extraction et du développement de caractéristiques audio et musicales pertinentes afin de mieux décrire le contenu des éléments contenus dans ces bases de données.Ce chapitre explique plusieurs phénomènes psychoacoustiques et utilise des techniques de traitement du signal sonore afin de calculer des caractéristiques audio.De nouvelles méthodes d'agrégation de caractéristiques audio locales sont proposées afin d'améliorer la classification des morceaux.Le quatrième chapitre décrit l'utilisation des caractéristiques musicales extraites afin de trier les morceaux par thèmes et donc de permettre les recommandations musicales et la génération automatique de listes de lecture thématiques homogènes.Cette partie implique l'utilisation d'algorithmes d'apprentissage automatique afin de réaliser des tâches de classification musicale.Les contributions de ce mémoire sont résumées dans le cinquième chapitre qui propose également des perspectives de recherche dans l'apprentissage automatique et l'extraction de caractéristiques audio multi-échelles. / This doctoral dissertation presents, discusses and proposes tools for the automatic information retrieval in big musical databases.The main application is the supervised classification of musical themes to generate thematic playlists.The first chapter introduces the different contexts and concepts around big musical databases and their consumption.The second chapter focuses on the description of existing music databases as part of academic experiments in audio analysis.This chapter notably introduces issues concerning the variety and unequal proportions of the themes contained in a database, which remain complex to take into account in supervised classification.The third chapter explains the importance of extracting and developing relevant audio features in order to better describe the content of music tracks in these databases.This chapter explains several psychoacoustic phenomena and uses sound signal processing techniques to compute audio features.New methods of aggregating local audio features are proposed to improve song classification.The fourth chapter describes the use of the extracted audio features in order to sort the songs by themes and thus to allow the musical recommendations and the automatic generation of homogeneous thematic playlists.This part involves the use of machine learning algorithms to perform music classification tasks.The contributions of this dissertation are summarized in the fifth chapter which also proposes research perspectives in machine learning and extraction of multi-scale audio features.
5

Modèles de déformation de processus stochastiques généralisés : application à l'estimation des non-stationnarités dans les signaux audio

Omer, Harold 18 June 2015 (has links)
Ce manuscrit porte sur la modélisation et l'estimation de certaines non-stationnarités dans les signaux audio. Nous nous intéressons particulièrement à une classe de modèles de sons que nous nommons timbre*dynamique dans lesquels un signal stationnaire, associé au phénomène physique à l'origine du son, est déformé au cours du temps par un opérateur linéaire unitaire, appelé opérateur de déformation, associé à l'évolution temporelle des caractéristiques de ce phénomène physique. Les signaux audio sont modélisés comme des processus gaussiens généralisés et nous donnons dans un premier temps un ensemble d'outils mathématiques qui étendent certaines notions utilisées en traitement du signal au cas des processus stochastiques généralisés.Nous introduisons ensuite les opérateurs de déformations étudiés dans ce manuscrit. L'opérateur de modulation fréquentielle qui est l'opérateur de multiplication par une fonction à valeurs complexes de module unité, et l'opérateur de changement d'horloge qui est la version unitaire de l'opérateur de composition.Lorsque ces opérateurs agissent sur des processus stationnaires les processus déformés possèdent localement des propriétés de stationnarité et les opérateurs de déformation peuvent être approximés par des opérateurs de translation dans les plans temps-fréquence et temps-échelle. Nous donnons alors des bornes pour les erreurs d'approximation correspondantes. Nous développons ensuite un estimateur de maximum de vraisemblance approché des fonctions de dilatation et de modulation. L'algorithme proposé est testé et validé sur des signaux synthétiques et des sons naurels. / This manuscript deals with the modeling and estimation of certain non-stationarities in audio signals. We are particularly interested in a sound class models which we call dynamic*timbre in which a stationary signal, associated with the physical phenomenon causing the sound, is deformed over time by a linear unitary operator, called deformation operator, associated with the temporal evolution of the characteristics of this physical phenomenon.Audio signals are modeled as generalized Gaussian processes. We give first a set of mathematical tools that extend some classical notions used in signal processing in case of generalized stochastic processes.We then introduce the two deformations operators studied in this manuscript. The frequency modulation operator is the multiplication operator by a complex-valued function of unit module and the time-warping operator is the unit version of the composition operator by a bijective function.When these operators act on generalized stationary processes, deformed process are non-stationary generalized process which locally have stationarity properties and deformation operators can be approximated by translation operators in the time-frequency plans and time-scale.We give accurate versions of these approximations, as well as bounds for the corresponding approximation errors.Based on these approximations, we develop an approximated maximum likelihood estimator of the warping and modulation functions. The proposed algorithm is tested and validated on synthetic signals. Its application to natural sounds confirm the validity of the timbre*dynamic model in this context.
6

Méthodes Computationnelles en Géométrie de l'Information et Applications Temps Réel au Traitement du Signal Audio

Dessein, Arnaud 13 December 2012 (has links) (PDF)
Cette thèse propose des méthodes computationnelles nouvelles en géométrie de l'information, avec des applications temps réel au traitement du signal audio. Dans ce contexte, nous traitons en parallèle les problèmes applicatifs de la segmentation audio en temps réel, et de la transcription de musique polyphonique en temps réel. Nous abordons ces applications par le développement respectif de cadres théoriques pour la détection séquentielle de ruptures dans les familles exponentielles, et pour la factorisation en matrices non négatives avec des divergences convexes-concaves. D'une part, la détection séquentielle de ruptures est étudiée par l'intermédiaire de la géométrie de l'information dualement plate liée aux familles exponentielles. Nous développons notamment un cadre statistique générique et unificateur, reposant sur des tests d'hypothèses multiples à l'aide de rapports de vraisemblance généralisés exacts. Nous appliquons ce cadre à la conception d'un système modulaire pour la segmentation audio temps réel avec des types de signaux et de critères d'homogénéité arbitraires. Le système proposé contrôle le flux d'information audio au fur et à mesure qu'il se déroule dans le temps pour détecter des changements. D'autre part, nous étudions la factorisation en matrices non négatives avec des divergences convexes-concaves sur l'espace des mesures discrètes positives. En particulier, nous formulons un cadre d'optimisation générique et unificateur pour la factorisation en matrices non négatives, utilisant des bornes variationnelles par le biais de fonctions auxiliaires. Nous mettons ce cadre à profit en concevant un système temps réel de transcription de musique polyphonique avec un contrôle explicite du compromis fréquentiel pendant l'analyse. Le système développé décompose le signal musical arrivant au cours du temps sur un dictionnaire de modèles spectraux de notes. Ces contributions apportent des pistes de réflexion et des perspectives de recherche intéressantes dans le domaine du traitement du signal audio, et plus généralement de l'apprentissage automatique et du traitement du signal, dans le champ relativement jeune mais néanmoins fécond de la géométrie de l'information computationnelle.

Page generated in 0.0969 seconds