• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 215
  • 38
  • 27
  • 23
  • 12
  • 8
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 398
  • 194
  • 81
  • 74
  • 58
  • 54
  • 48
  • 47
  • 46
  • 45
  • 37
  • 33
  • 33
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A factorization algorithm with applications to the linear filtering and control problems /

Ahmed, Moustafa Elshafei January 1981 (has links)
No description available.
42

Factorization in unitary loop groups and reduced words in affine Weyl groups.

Pittman-Polletta, Benjamin Rafael January 2010 (has links)
The purpose of this dissertation is to elaborate, with specific examples and calculations, on a new refinement of triangular factorization for the loop group of a simple, compact Lie group K, first appearing in Pickrell & Pittman-Polletta 2010. This new factorization allows us to write a smooth map from the unit circle into K (having a triangular factorization) as a triply infinite product of loops, each of which depends on a single complex parameter. These parameters give a set of coordinates on the loop group of K.The order of the factors in this refinement is determined by an infinite sequence of simple generators in the affine Weyl group associated to K, having certain properties. The major results of this dissertation are examples of such sequences for all the classical Weyl groups.We also produce a variation of this refinement which allows us to write smooth maps from the unit circle into the special unitary group of n by n matrices as products of 2n+1 infinite products. By analogy with the semisimple analog of our factorization, we suggest that this variation of the refinement has simpler combinatorics than that appearing in Pickrell & Pittman-Polletta 2010.
43

Architecture-aware Algorithm Design of Sparse Tensor/Matrix Primitives for GPUs

Nisa, Israt 02 October 2019 (has links)
No description available.
44

Group Convex Orthogonal Non-negative Matrix Tri-Factorization with Applications in FC Fingerprinting

Li, Kendrick T. 16 June 2020 (has links)
No description available.
45

Time Series Forecasting using Temporal Regularized Matrix Factorization and Its Application to Traffic Speed Datasets

Zeng, Jianfeng 30 September 2021 (has links)
No description available.
46

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
47

Products of diagonalizable matrices

Khoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex numbers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagonalizable matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingular matrices into Involutions. Chapter 5 studies factorization of a complex matrix into Positive-(semi)definite matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)
48

The Factorization of Entire and Meromorphic Functions

洪焌維, Jiun-Wei Hung Unknown Date (has links)
在這篇論文中,我們將探討整函數與半純函數之分解。並且著重於質函數與擬質函數之研究。同時,我們證明某類多項式其次數為合成數且為質函數。 / In this thesis, we study some factorizations of entire and meromorphic functions, in particular, prime and pseudo-prime functions. Also, we obtain a new class of prime polynomials of composite degree.
49

有理函數之分解 / The Factorization of Rational Functions

梁順豪, Liang ,Shun-Hao Unknown Date (has links)
在這篇論文裡,我們主要有兩部分。首先,我們給了一類新的素有理函數,接下來,我們整理了一個有理函數分解的反例,並討論了Weierstrass p-函數的素性。 / In this thesis, our primary objective here is two parts. First, we give a new class of prime rational functions. Next, we study an example in the factorization of the rational functions and the primeness of the Weierstrass p-function.
50

Nonnegative matrix factorization algorithms and applications

Ho, Ngoc-Diep 09 June 2008 (has links)
Data-mining has become a hot topic in recent years. It consists of extracting relevant information or structures from data such as: pictures, textual material, networks, etc. Such information or structures are usually not trivial to obtain and many techniques have been proposed to address this problem, including Independent Component Analysis, Latent Sematic Analysis, etc. Nonnegative Matrix Factorization is yet another technique that relies on the nonnegativity of the data and the nonnegativity assumption of the underlying model. The main advantage of this technique is that nonnegative objects are modeled by a combination of some basic nonnegative parts, which provides a physical interpretation of the construction of the objects. This is an exclusive feature that is known to be useful in many areas such as Computer Vision, Information Retrieval, etc. In this thesis, we look at several aspects of Nonnegative Matrix Factorization, focusing on numerical algorithms and their applications to different kinds of data and constraints. This includes Tensor Nonnegative Factorization, Weighted Nonnegative Matrix Factorization, Symmetric Nonnegative Matrix Factorization, Stochastic Matrix Approximation, etc. The recently proposed Rank-one Residue Iteration (RRI) is the common thread in all of these factorizations. It is shown to be a fast method with good convergence properties which adapts well to many situations.

Page generated in 0.1123 seconds