• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fadiga funcional e estrutural em fios de NiTi com memória de forma submetidos a ciclos termomecânicos / Functional and structural fatigue of NiTi shape memory wires subjected to thermomechanical cycling

Barcelos, Arthur Pinheiro 16 March 2018 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2018. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-08-07T21:48:07Z No. of bitstreams: 1 2018_ArthurPinheiroBarcelos.pdf: 14201406 bytes, checksum: 22cffe289d9dbf4258328e4dcf14fa84 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-08-08T19:06:21Z (GMT) No. of bitstreams: 1 2018_ArthurPinheiroBarcelos.pdf: 14201406 bytes, checksum: 22cffe289d9dbf4258328e4dcf14fa84 (MD5) / Made available in DSpace on 2018-08-08T19:06:21Z (GMT). No. of bitstreams: 1 2018_ArthurPinheiroBarcelos.pdf: 14201406 bytes, checksum: 22cffe289d9dbf4258328e4dcf14fa84 (MD5) Previous issue date: 2018-08-07 / As Ligas com Memória de Forma (LMF) apresentam dois comportamentos termomecânicos diferenciados que podem ser explorados para o desenvolvimento de muitas aplicações: o efeito memória de forma e a pseudoelasticidade. O efeito memória de forma é caracterizado por deformações reversíveis originárias de variações de temperatura do material devido a transformações martensíticas termoelásticas. Esse princípio de funcionamento estimula a aplicação de LMF como atuadores, apresentando algumas vantagens em relação a outros atuadores convencionais devido à sua excepcional redução de peso e volume de projetos. A escassez na literatura de métodos definitivos para prever a vida útil do atuador de LMF motiva o estudo de seu comportamento cíclico e fadiga. Os atuadores baseados em ligas com memória de forma podem acumular deformações plásticas e sofrer ruptura, além de perder gradualmente a capacidade de recuperação da forma, conhecida como fadiga funcional, associada às repetidas transformações induzidas por temperatura. Nesse âmbito, a fadiga estrutural e a fadiga funcional de fios NiTi SmartFlex® submetidos à transformação de fase martensítica induzida termicamente sob tensão mecânica constante são investigadas. Foram realizados 24 ensaios de ciclagem termomecânica em diferentes condições de aquecimento e resfriamento e sob quatro diferentes níveis de tensão axial. A influência dessas condições de ensaio foram analisadas, a degradação do efeito memória de forma foi visualizada em curvas de evolução da deformação e a fadiga estrutural foi estudada por meio de três diferentes curvas de ajuste: curvas S-N, curvas que relacionam a deformação plástica com a vida em fadiga baseadas nas relações de Coffin-Manson e curvas baseadas no modelo de plano crítico de Smith, Watson e Topper. Conclui-se que o aumento na taxa de aquecimento e resfriamento e na tensão mecânica pode resultar em falha precoce do material. No âmbito de fadiga funcional, as condições estabelecidas nos ensaios resultaram em alteração na deformação recuperável inferior a 1% para o material estudado. / Shape Memory Alloys (SMA) presents two exceptional thermomechanical behaviors that can be used for development of many applications: shape memory effect and superelasticity. The shape memory effect is characterized by reversible deformation under thermal load due to thermoelastic martensitic transformations. This operation principle encourages the application of SMA as actuators, presenting some advantages over other conventional actuators because of their weight and volume saving. The lack of definite methods for predicting SMA actuator lifetime motivates the study of its cyclic behavior and fatigue. SMA actuators may accumulate plastic deformations and suffer rupture, in addition to gradually losing shape recovery, known as functional fatigue, associated with the repeated thermal induced transformations. The structural thermomechanical fatigue and functional fatigue of NiTi SmartFlex® wires undergoing thermally induced martensitic phase transformation with constant stress are investigated. An amount of 24 thermomechanical cycling tests were performed under different heating and cooling conditions and under four different axial stress levels. The influence of these test conditions was analyzed, the wire strain evolution was evaluated to determine the degradation of shape memory effect and three power law curves were used to fit fatigue failure data: S-N curves, plastic strain versus fatigue life curves based on Coffin-Manson relation, and curves based on the critical plane model of Smith, Watson, and Topper. It can be concluded that the application of high heating/cooling rate and high stress can result in early failure of the material. The test conditions did not imply significant functional fatigue (recoverable strain below 1%).
2

Contribuições às análises de fratura e fadiga de componentes tridimensionais pelo Método dos Elementos de Contorno Dual / Contributions to fracture and fatigue analysis of tridimensional components by the Dual Boundary Element Method

Cordeiro, Sérgio Gustavo Ferreira 05 February 2018 (has links)
O presente trabalho consiste no desenvolvimento de uma ferramenta computacional para análises de fratura e fadiga de componentes tridimensionais a partir de modelos geométricos de Desenho Assistido por Computador (CAD, acrônimo do inglês). Modelos de propagação de fissuras associados a leis empíricas de fadiga permitem a determinação da vida útil de peças mecânico-estruturais. Tais análises são de vital importância para garantir a segurança estrutural em diversos projetos de engenharia tais como os de pontes, plataformas off-shore e aeronaves. No entanto, a criação de modelos de análise a partir de modelos geométricos de CAD envolve diversas etapas intermediárias que visam a obtenção de malhas volumétricas adequadas. A grande maioria dos modelos de CAD trabalha com a representação de sólidos a partir de seu contorno utilizando superfícies paramétricas, dentre as quais se destacam as superfícies B-Splines Racionais Não Uniformes (NURBS, acrônimo do inglês). Para gerar malhas volumétricas é necessário que o conjunto de superfícies NURBS que descrevem o objeto seja \"estanque\", ou seja, sem lacunas e/ou superposições nas conexões das superfícies, o que não é possível garantir na grande maioria dos modelos constituídos por NURBS. As contribuições propostas no presente trabalho são aplicáveis a modelos baseados no Método dos Elementos de Contorno dual (MEC dual), os quais exigem apenas a discretização das superfícies do problema, ou seja, contorno mais fissuras. No intuito de criar os modelos de análise de maneira eficiente a partir dos modelos geométricos de CAD, desenvolveu-se uma estratégia de colocação que permite discretizar de maneira independente cada uma das superfícies NURBS que compõem os modelos geométricos sólidos. Com a estratégia proposta evitam-se as dificuldades no tratamento das conexões entre as superfícies sendo possível analisar modelos geométricos \"não estanques\". A implementação abrange superfícies NURBS, aparadas ou não, de ordens polinomiais quaisquer e elementos de contorno triangulares e quadrilaterais de aproximação linear. As equações integrais de deslocamentos e de forças de superfície são regularizadas e as integrais singulares e hipersingulares são tratadas pelo Método de Guiggiani. Fissuras de borda são inseridas nos modelos de análise a partir de um algoritmo de remalhamento simples baseado em tolerâncias dimensionais. O mesmo algoritmo é utilizado para as análises incrementais de propagação. Três técnicas de extração dos Fatores de Intensidade de Tensão (FIT) foram implementadas para os modelos baseados na Mecânica da Fratura Elástica Linear (MFEL), a saber, as técnicas de correlação, de extrapolação e de ajuste de deslocamentos. A extensão dessa última técnica para problemas tridimensionais é outra contribuição do presente trabalho. Os critérios da máxima taxa de liberação de energia e de Schöllmann foram utilizados para determinar o FIT equivalente e o caminho de propagação das fissuras. O ângulo de deflexão é determinado por um algoritmo de otimização e o ângulo de torção, definido para o critério de Schöllmann, é imposto no vetor de propagação a partir de uma formulação variacional unidimensional, definida sobre a linha de frente da fissura. Nos modelos de fadiga adota-se a MFEL e a equação de Paris-Erdogan para determinar a vida útil à propagação de defeitos preexistentes. Um procedimento iterativo foi desenvolvido para evitar a interpenetração da matéria após o contato das faces da fissura, permitindo análises de fadiga com carregamentos alternados. Como proposta para a continuidade da pesquisa propõe-se desenvolver formulações isogeométricas de elementos de contorno para analisar problemas de fratura e fadiga diretamente dos modelos geométricos de CAD, sem a necessidade de gerar as malhas de superfície. Um estudo numérico preliminar envolvendo uma versão isogeométrica do MEC dual baseada em NURBS e a versão convencional utilizando polinômios de Lagrange lineares e quadráticos foi realizado. A partir do estudo foi possível apontar as vantagens e desvantagens de cada formulação e sugerir melhorias para ambas. / The present work consists in the development of a computational tool for fracture and fatigue analysis of three-dimensional components obtained from geometrical models of Computer-Aided Design (CAD). Crack propagation models associated with empirical fatigue laws allow the determination of residual life for structural-mechanical pieces. These analyses are vital to ensure the structural safety in several engineering projects such as in bridges, offshore platforms and aircraft. However, the creation of the analysis models from geometrical CAD models requires several intermediary steps in order to obtain suitable volumetric meshes of the problems. The majority of CAD models represent solids with parametric surfaces to describe its boundaries, which is known as the Boundary representation (B-representation). The most common parametric surfaces are Non-Uniform Rational B-Splines (NURBS). To generate a volumetric mesh it is required that the set of surfaces that describe the object must be watertight, i.e., without gaps or superposition at the surfaces connections, which is not possible to unsure using NURBS. The contributions proposed at the present thesis are applicable to models based on the Dual Boundary Element Method (DBEM), which require only the discretization of the surfaces of the problems, i.e., boundary and cracks. A special collocation strategy was developed in order to create the analysis models efficiently from the geometrical CAD models. The collocation strategy allows discretizing independently each one of the NURBS surfaces that compose the geometrical solid models. Therefore, the difficulties in the treatment of the surface connections are avoided and it becomes possible to create analysis models from non-watertight geometrical models. The implementation covers trimmed and non-trimmed NURBS surfaces of any polynomial orders and also triangular and quadrilateral boundary elements of linear order. The displacement and traction boundary integral equations are regularized and the strong and hypersingular integrals are treated with the Guiggiani\'s method. Edge cracks are inserted in the models by a simple remeshing procedure based on dimensional tolerances. The same remeshing approach is adopted for the incremental crack propagation analysis. Three techniques were adopted to extract the Stress Intensity Factors (SIF) in the context of Linear Elastic Fracture Mechanics (LEFM), i.e., the displacement correlation, extrapolation and fitting techniques. The extension of this last technique to three-dimensional problems is another contribution of the present work. Both the general maximum energy realise rate and the Schöllmann\'s criteria were adopted to determine the equivalent SIF and the crack propagation path. The deflection angle is obtained by an optimization algorithm and the torsion angle, defined for the Schöllmann\'s criterion, is imposed in the propagation vector through a one-dimensional variational formulation defined over the crack front line. The concepts of LEFM are adopted together with the Paris-Erdogan equation in order to determine the fatigue life of pre-existing defects. An iterative procedure was developed to avoid the self-intersection of the crack surfaces allowing fatigue analysis with alternate loadings. Finally, as suggestion for future researches, it was started the study of isogeometric boundary element formulations in order to perform fracture and fatigue analysis directly from CAD geometries, without surface mesh generation. A preliminary numerical study involving an isogeometric version of the DBEM using NURBS and the conventional DBEM using linear and quadratic Lagrange elements was presented. From the study it was possible to point out the advantages and disadvantages of each approach and suggest improvements for both.
3

Contribuições às análises de fratura e fadiga de componentes tridimensionais pelo Método dos Elementos de Contorno Dual / Contributions to fracture and fatigue analysis of tridimensional components by the Dual Boundary Element Method

Sérgio Gustavo Ferreira Cordeiro 05 February 2018 (has links)
O presente trabalho consiste no desenvolvimento de uma ferramenta computacional para análises de fratura e fadiga de componentes tridimensionais a partir de modelos geométricos de Desenho Assistido por Computador (CAD, acrônimo do inglês). Modelos de propagação de fissuras associados a leis empíricas de fadiga permitem a determinação da vida útil de peças mecânico-estruturais. Tais análises são de vital importância para garantir a segurança estrutural em diversos projetos de engenharia tais como os de pontes, plataformas off-shore e aeronaves. No entanto, a criação de modelos de análise a partir de modelos geométricos de CAD envolve diversas etapas intermediárias que visam a obtenção de malhas volumétricas adequadas. A grande maioria dos modelos de CAD trabalha com a representação de sólidos a partir de seu contorno utilizando superfícies paramétricas, dentre as quais se destacam as superfícies B-Splines Racionais Não Uniformes (NURBS, acrônimo do inglês). Para gerar malhas volumétricas é necessário que o conjunto de superfícies NURBS que descrevem o objeto seja \"estanque\", ou seja, sem lacunas e/ou superposições nas conexões das superfícies, o que não é possível garantir na grande maioria dos modelos constituídos por NURBS. As contribuições propostas no presente trabalho são aplicáveis a modelos baseados no Método dos Elementos de Contorno dual (MEC dual), os quais exigem apenas a discretização das superfícies do problema, ou seja, contorno mais fissuras. No intuito de criar os modelos de análise de maneira eficiente a partir dos modelos geométricos de CAD, desenvolveu-se uma estratégia de colocação que permite discretizar de maneira independente cada uma das superfícies NURBS que compõem os modelos geométricos sólidos. Com a estratégia proposta evitam-se as dificuldades no tratamento das conexões entre as superfícies sendo possível analisar modelos geométricos \"não estanques\". A implementação abrange superfícies NURBS, aparadas ou não, de ordens polinomiais quaisquer e elementos de contorno triangulares e quadrilaterais de aproximação linear. As equações integrais de deslocamentos e de forças de superfície são regularizadas e as integrais singulares e hipersingulares são tratadas pelo Método de Guiggiani. Fissuras de borda são inseridas nos modelos de análise a partir de um algoritmo de remalhamento simples baseado em tolerâncias dimensionais. O mesmo algoritmo é utilizado para as análises incrementais de propagação. Três técnicas de extração dos Fatores de Intensidade de Tensão (FIT) foram implementadas para os modelos baseados na Mecânica da Fratura Elástica Linear (MFEL), a saber, as técnicas de correlação, de extrapolação e de ajuste de deslocamentos. A extensão dessa última técnica para problemas tridimensionais é outra contribuição do presente trabalho. Os critérios da máxima taxa de liberação de energia e de Schöllmann foram utilizados para determinar o FIT equivalente e o caminho de propagação das fissuras. O ângulo de deflexão é determinado por um algoritmo de otimização e o ângulo de torção, definido para o critério de Schöllmann, é imposto no vetor de propagação a partir de uma formulação variacional unidimensional, definida sobre a linha de frente da fissura. Nos modelos de fadiga adota-se a MFEL e a equação de Paris-Erdogan para determinar a vida útil à propagação de defeitos preexistentes. Um procedimento iterativo foi desenvolvido para evitar a interpenetração da matéria após o contato das faces da fissura, permitindo análises de fadiga com carregamentos alternados. Como proposta para a continuidade da pesquisa propõe-se desenvolver formulações isogeométricas de elementos de contorno para analisar problemas de fratura e fadiga diretamente dos modelos geométricos de CAD, sem a necessidade de gerar as malhas de superfície. Um estudo numérico preliminar envolvendo uma versão isogeométrica do MEC dual baseada em NURBS e a versão convencional utilizando polinômios de Lagrange lineares e quadráticos foi realizado. A partir do estudo foi possível apontar as vantagens e desvantagens de cada formulação e sugerir melhorias para ambas. / The present work consists in the development of a computational tool for fracture and fatigue analysis of three-dimensional components obtained from geometrical models of Computer-Aided Design (CAD). Crack propagation models associated with empirical fatigue laws allow the determination of residual life for structural-mechanical pieces. These analyses are vital to ensure the structural safety in several engineering projects such as in bridges, offshore platforms and aircraft. However, the creation of the analysis models from geometrical CAD models requires several intermediary steps in order to obtain suitable volumetric meshes of the problems. The majority of CAD models represent solids with parametric surfaces to describe its boundaries, which is known as the Boundary representation (B-representation). The most common parametric surfaces are Non-Uniform Rational B-Splines (NURBS). To generate a volumetric mesh it is required that the set of surfaces that describe the object must be watertight, i.e., without gaps or superposition at the surfaces connections, which is not possible to unsure using NURBS. The contributions proposed at the present thesis are applicable to models based on the Dual Boundary Element Method (DBEM), which require only the discretization of the surfaces of the problems, i.e., boundary and cracks. A special collocation strategy was developed in order to create the analysis models efficiently from the geometrical CAD models. The collocation strategy allows discretizing independently each one of the NURBS surfaces that compose the geometrical solid models. Therefore, the difficulties in the treatment of the surface connections are avoided and it becomes possible to create analysis models from non-watertight geometrical models. The implementation covers trimmed and non-trimmed NURBS surfaces of any polynomial orders and also triangular and quadrilateral boundary elements of linear order. The displacement and traction boundary integral equations are regularized and the strong and hypersingular integrals are treated with the Guiggiani\'s method. Edge cracks are inserted in the models by a simple remeshing procedure based on dimensional tolerances. The same remeshing approach is adopted for the incremental crack propagation analysis. Three techniques were adopted to extract the Stress Intensity Factors (SIF) in the context of Linear Elastic Fracture Mechanics (LEFM), i.e., the displacement correlation, extrapolation and fitting techniques. The extension of this last technique to three-dimensional problems is another contribution of the present work. Both the general maximum energy realise rate and the Schöllmann\'s criteria were adopted to determine the equivalent SIF and the crack propagation path. The deflection angle is obtained by an optimization algorithm and the torsion angle, defined for the Schöllmann\'s criterion, is imposed in the propagation vector through a one-dimensional variational formulation defined over the crack front line. The concepts of LEFM are adopted together with the Paris-Erdogan equation in order to determine the fatigue life of pre-existing defects. An iterative procedure was developed to avoid the self-intersection of the crack surfaces allowing fatigue analysis with alternate loadings. Finally, as suggestion for future researches, it was started the study of isogeometric boundary element formulations in order to perform fracture and fatigue analysis directly from CAD geometries, without surface mesh generation. A preliminary numerical study involving an isogeometric version of the DBEM using NURBS and the conventional DBEM using linear and quadratic Lagrange elements was presented. From the study it was possible to point out the advantages and disadvantages of each approach and suggest improvements for both.

Page generated in 0.0616 seconds