Spelling suggestions: "subject:"1oading"" "subject:"dhading""
341 |
Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective ChannelsLiu, Yuan 01 January 2005 (has links)
In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches.
|
342 |
Decode and Forward Relay Assisting Active Jamming in NOMA SystemAkurathi, Lakshmikanth, Chilluguri, Surya Teja Reddy January 2022 (has links)
Non-orthogonal multiple access (NOMA), with its exceptional spectrum efficiency, was thought to be a promising technology for upcoming wireless communications. Physical layer security has also been investigated to improve the security performance of the system. Power-domain NOMA has been considered for this paper, where multiple users can share the same spectrum which bases this sharing on distinct power values. Power allocation is used to allocate different power to the users based on their channel condition. Data signals of different users are superimposed on the transmitter's side, and the receiver uses successive interference cancellation (SIC) to remove the unwanted signals before decoding its own signal. There exist an eavesdropper whose motive is to eavesdrop on the confidential information that is being shared with the users. The network model developed in this way consists of two links, one of which considers the relay transmission path from the source to Near User to Far User and the other of which takes into account the direct transmission path from the source to the destination, both of which experience Nakagami-m fading. To degrade the eavesdropper's channel, the jamming technique is used against the eavesdropper where users are assumed to be in a full-duplex mode which aims to improve the security of the physical layer. Secrecy performance metrics such as secrecy outage probability, secrecy capacity, etc. are evaluated and analyzed for the considered system. Mathematical analysis and simulation using MATLAB are done to assess, analyze and visualize the system's performance in the presence of an eavesdropper when the jamming technique is applied. According to simulation results, the active jamming approach enhances the secrecy performance of the entire system and leads to a positive improvement in the secrecy rate.
|
343 |
Fading pointsMiddleton, Neil, 1977- January 2004 (has links)
No description available.
|
344 |
Modelling priority queuing systems with varying service capacityChen, M., Jin, X.L., Wang, Y.Z., Cheng, X.Q., Min, Geyong January 2013 (has links)
No / Many studies have been conducted to investigate the performance of priority queuing (PQ) systems with constant service capacity. However, due to the time-varying nature of wireless channels in wireless communication networks, the service capacity of queuing systemsmay vary over time. Therefore, it is necessary to investigate the performance of PQ systems in the presence of varying service capacity. In addition, self-similar traffic has been discovered to be a ubiquitous phenomenon in various communication networks, which poses great challenges to performance modelling of scheduling systems due to its fractal-like nature. Therefore, this paper develops a flow-decomposition based approach to performance modelling of PQ systems subject to self-similar traffic and varying service capacity. It specifically proposes an analytical model to investigate queue length distributions of individual traffic flows. The validity and accuracy of the model is demonstrated via extensive simulation experiments.
|
345 |
A Force Free Procedure to Expand Food and Medicine Ingestion in EquinesKring, Anja 07 1900 (has links)
De-worming is an important and well-researched part of equine husbandry. However, the de-worming process has been problematic as horses often display avoidance behavior toward the oral administration of the paste. The current study was designed to investigate a force-free method to teach equines to voluntary ingest five novel target stimuli including de-wormer. This method was based on a fading procedure. Participants were initially presented with a highly preferred food stimulus. Over the course of the study, the target stimuli were blended into the highly preferred food stimulus at increasingly higher ratios. By the end of the procedure, only the target stimuli were presented. Four horses participated in the study. After treatment, three of the four horses voluntarily ingested all five target stimuli. The fourth horse voluntarily ingested two novel stimuli and the other three novel stimuli if blended with three quarters of an ounce of pellets. Overall, the procedure was successful and provides a non-aversive alternative to existing de-worming strategies.
|
346 |
Channel Prediction for Adaptive Modulation in Wireless CommunicationsChan, Raymond 06 August 2003 (has links)
This thesis examines the benefits of using adaptive modulation and coding in terms of spectral efficiency and probability of bit error. Specifically, we examine the performance enhancement made possible by using linear prediction along with channel estimation in conjunction with adaptive modulation. We begin this manuscript with basic fundamentals of our study, followed by a detailed view of simulations, their results, and our conclusions from them. The study includes simulations in slow and moderately fast flat fading Rayleigh channels.
We present our findings regarding the advantages of using predictive measures to foresee the state of the channel and make adjustments to transmissions accordingly.
In addition to finding the general advantages of channel prediction in adaptive modulation, we explore various ways to adjust the prediction algorithm when we are faced with high Doppler rates and fast fading.
By the end of this work, we should have a better understanding of when channel prediction is most valuable to adaptive modulation and when it is weakest, and how we can alleviate the problems that prediction will have in harsh environments. / Master of Science
|
347 |
Turbo égalisation de faible complexité avec estimation des canaux multi trajets à évanouissements rapidesBerdai, Abdellah 17 April 2018 (has links)
De nos jours, certaines applications multimédias embarquées tel que la visiophonie, l'internet à haut débit, etc., de par leur limitations en capacitée dues aux efets introduits par les canaux de transmission, requierent des traitements numériques ecaces des signaux recus. La turbo detection semble prometteuse pour ce genre de demande. Elle permet d'exploiter la totalitée de l'information mise à la disposition du récepteur. Cependant, ses performances pour des canaux fortement dégrades, dependent largement de l'estimation des paramètres du milieu de transmission. Sa complexité calculatoire est liée aux modules échangeant les informations extrinseques. Dans ce contexte, cette thèse cible la conception et l'analyse des récepteurs iteratifs de faible complexitée destinées à la transmission des symboles codés dans les canaux de Rayleigh multi trajets à évanouissements rapides, inconnus au récepteur. Nous nous interessons dans la première partie de la thèse à la turbo égalisation dans le contexte mono usager : nous proposons et analysons une architecture iterative de faible complexité, intégrant l'égalisation, le décodage et l'estimation de la réponse impulsionnelle du canal et ses statistiques. Grâce à des outils semi analytiques, nous expliquons l'in- uence des paramètres du milieu de propagation sur le turbo détecteur et justions le choix des modules realisant le meilleur compromis complexite/performances. D'autre part, nous demontrons que l'architecture proposee s'adapte bien aux milieux severement perturbes dont la reponse impulsionnelle et les statistiques sont inconnues au recepteur. Dans la seconde partie, nos travaux de recherche portent sur la turbo detection multi usagers pour une liaison montante d'un systeme DS-CDMA asynchrone. Nous etudions deux situations. Dans la premiere, le recepteur est equipe d'une seule antenne. Nous proposons et evaluons une architecture iterative constituee de modules de faible complexit e, joignant la detection multi usagers, le decodage et l'estimation des canaux de transmission. Quant a la deuxieme situation, nous exploitons le principe de diversite d'antennes en reception et etendons les modules de l'architecture proposee au contexte multi antennes. Nous demontrons par simulation que l'architecture proposee permet d'eradiquer les interferences occasionnees par les milieux de propagation sans augmenter de maniere significative le rapport signal a bruit. / Beyond their capacity limitations due to the transmission channels efects, nowadays, some embarked multimedia applications such as video telephony, broadband internet, etc., require ecient digital processing of the received signals. Turbo detection is a promising method to address these requirements. It allows exploiting all the available information at the receiver. However, its performance for the severe channels is highly dependent on the transmission parameter estimation. Its computational complexity is mainly due to the SISO modules. In this context, this thesis study the design and analysis of low complexity iterative receiver for the coded symbols over unknown fast fading multipath Rayleigh channels. In the first part of the thesis, we investigate the SISO turbo equalization for single user : we propose and analyze an iterative low complexity architecture, including equalization, decoding and channel estimation with its statistics. Using semi analytical tools, we explain the propagation efect on the turbo equalizer and justify the choice of modules realizing the best complexity/performance compromise. Furthermore, we demonstrate that the proposed architecture is efective in severe channel conditions where the impulse response and statistics are unknown to the receiver. In the second part, our research focuses on multi-user turbo detection for uplink asynchronous DS-CDMA systems. Two situations are considered. For the first one, the receiver has a single antenna. We propose and evaluate an iterative architecture involving lower complexity modules, handling multi-user detection, decoding and channels estimation. As for the second situation, we use the receiver diversity principle and we extend the proposed architecture modules to the multi antennas context. Simulation results showed that the proposed architecture eliminate almost all the interference caused by the channel without increasing significantly the required signal to noise ratio.
|
348 |
LDPC-coded modulation for transmission over AWGN and flat rayleigh fading channelsYang, Rui 17 April 2018 (has links)
La modulation codée est une technique de transmission efficace en largeur de bande qui intègre le codage de canal et la modulation en une seule entité et ce, afin d'améliorer les performances tout en conservant la même efficacité spectrale comparé à la modulation non codée. Les codes de parité à faible densité (low-density parity-check codes, LDPC) sont les codes correcteurs d'erreurs les plus puissants et approchent la limite de Shannon, tout en ayant une complexité de décodage relativement faible. L'idée de combiner les codes LDPC et la modulation efficace en largeur de bande a donc été considérée par de nombreux chercheurs. Dans ce mémoire, nous étudions une méthode de modulation codée à la fois puissante et efficace en largeur de bande, ayant d'excellentes performances de taux d'erreur binaire et une complexité d'implantation faible. Ceci est réalisé en utilisant un encodeur rapide, un décoder de faible complexité et aucun entrelaceur. Les performances du système proposé pour des transmissions sur un canal additif gaussien blanc et un canal à évanouissements plats de Rayleigh sont évaluées au moyen de simulations. Les résultats numériques montrent que la méthode de modulation codée utilisant la modulation d'amplitude en quadrature à M niveaux (M-QAM) peut atteindre d'excellentes performances pour toute une gamme d'efficacité spectrale. Une autre contribution de ce mémoire est une méthode simple pour réaliser une modulation codée adaptative avec les codes LDPC pour la transmission sur des canaux à évanouissements plats et lents de Rayleigh. Dans cette méthode, six combinaisons de paires encodeur modulateur sont employées pour une adaptation trame par trame. L'efficacité spectrale moyenne varie entre 0.5 et 5 bits/s/Hz lors de la transmission. Les résultats de simulation montrent que la modulation codée adaptative avec les codes LDPC offre une meilleure efficacité spectrale tout en maintenant une performance d'erreur acceptable.
|
349 |
Utilizing Channel State Information for Enhancement of Wireless Communication SystemsHeidari, Abdorreza January 2007 (has links)
One of the fundamental limitations of mobile radio
communications is their time-varying fading channel. This
thesis addresses the efficient use of channel state information
to improve the communication systems, with a particular
emphasis on practical issues such as compatibility with the
existing wireless systems and low complexity implementation.
The closed-loop transmit diversity technique is used to improve
the performance of the downlink channel in MIMO communication
systems. For example, the WCDMA standard endorsed by 3GPP
adopts a mode of downlink closed-loop scheme based on partial
channel state information known as mode 1 of
3GPP. Channel state information is fed back
from the mobile unit to the base station through a low-rate
uncoded feedback bit stream. In these closed-loop systems,
feedback error and feedback delay, as well as the sub-optimum
reconstruction of the quantized feedback data, are the usual
sources of deficiency.
In this thesis, we address the efficient reconstruction of the
beamforming weights in the presence of the feedback
imperfections, by exploiting the residual redundancies in the
feedback stream. We propose a number of algorithms for
reconstruction of beamforming weights at the base-station, with
the constraint of a constant transmit power. The issue of the
decoding at the receiver is also addressed. In one of the
proposed algorithms, channel fading prediction is utilized to
combat the feedback delay. We introduce the concept of Blind
Antenna Verification which can substitute the conventional
Antenna Weight Verification process without the need for any
training data. The closed-loop mode 1 of 3GPP is used as a
benchmark, and the performance is examined within a WCDMA
simulation framework. It is demonstrated that the proposed
algorithms have substantial gain over the conventional method
at all mobile speeds, and are suitable for the implementation
in practice. The proposed approach is applicable to other
closed-loop schemes as well.
The problem of (long-range) prediction of the fading channel is
also considered, which is a key element for many
fading-compensation techniques. A linear approach, usually used
to model the time evolution of the fading process, does not
perform well for long-range prediction applications. We propose
an adaptive algorithm using a state-space approach for the
fading process based on the sum-sinusoidal model. Also to
enhance the widely-used linear approach, we propose a tracking
method for a multi-step linear predictor. Comparing the two
methods in our simulations shows that the proposed algorithm
significantly outperforms the linear method, for both
stationary and non-stationary fading processes, especially for
long-range predictions. The robust structure, as well as the
reasonable computational complexity, makes the proposed
algorithm appealing for practical applications.
|
350 |
Utilizing Channel State Information for Enhancement of Wireless Communication SystemsHeidari, Abdorreza January 2007 (has links)
One of the fundamental limitations of mobile radio
communications is their time-varying fading channel. This
thesis addresses the efficient use of channel state information
to improve the communication systems, with a particular
emphasis on practical issues such as compatibility with the
existing wireless systems and low complexity implementation.
The closed-loop transmit diversity technique is used to improve
the performance of the downlink channel in MIMO communication
systems. For example, the WCDMA standard endorsed by 3GPP
adopts a mode of downlink closed-loop scheme based on partial
channel state information known as mode 1 of
3GPP. Channel state information is fed back
from the mobile unit to the base station through a low-rate
uncoded feedback bit stream. In these closed-loop systems,
feedback error and feedback delay, as well as the sub-optimum
reconstruction of the quantized feedback data, are the usual
sources of deficiency.
In this thesis, we address the efficient reconstruction of the
beamforming weights in the presence of the feedback
imperfections, by exploiting the residual redundancies in the
feedback stream. We propose a number of algorithms for
reconstruction of beamforming weights at the base-station, with
the constraint of a constant transmit power. The issue of the
decoding at the receiver is also addressed. In one of the
proposed algorithms, channel fading prediction is utilized to
combat the feedback delay. We introduce the concept of Blind
Antenna Verification which can substitute the conventional
Antenna Weight Verification process without the need for any
training data. The closed-loop mode 1 of 3GPP is used as a
benchmark, and the performance is examined within a WCDMA
simulation framework. It is demonstrated that the proposed
algorithms have substantial gain over the conventional method
at all mobile speeds, and are suitable for the implementation
in practice. The proposed approach is applicable to other
closed-loop schemes as well.
The problem of (long-range) prediction of the fading channel is
also considered, which is a key element for many
fading-compensation techniques. A linear approach, usually used
to model the time evolution of the fading process, does not
perform well for long-range prediction applications. We propose
an adaptive algorithm using a state-space approach for the
fading process based on the sum-sinusoidal model. Also to
enhance the widely-used linear approach, we propose a tracking
method for a multi-step linear predictor. Comparing the two
methods in our simulations shows that the proposed algorithm
significantly outperforms the linear method, for both
stationary and non-stationary fading processes, especially for
long-range predictions. The robust structure, as well as the
reasonable computational complexity, makes the proposed
algorithm appealing for practical applications.
|
Page generated in 0.1444 seconds