Spelling suggestions: "subject:"fahrbahnerkennung"" "subject:"anerkennung""
1 |
Lane Detection based on Contrast AnalysisKumar, Surinder 03 August 2016 (has links) (PDF)
Computer vision and image processing systems are ubiquitous in automotive domain and manufacturing industry. Lane detection warning systems has been an elementary part of the modern automotive industry. Due to the recent progress in the computer vision and image processing methods, economical and flexible use of computer vision is now pervasive and computing with images is not just for the realm of the science, but also for the arts and social science and even for hobbyists. Image processing is a key technology in automotive industry, even now there is hardly a single manufacturing process that is thinkable without imaging. The applications of image processing and computer vision methods in embedded systems platform, is an ongoing research area since many years. OpenCV, an open-source computer vision library containing optimized algorithms and methods for designing and implementing applications based on video and image processing techniques. These method are organized in the form of modules for specific field including, user-graphic interface, machine learning, feature extraction etc [43]. Vision-based automotive application systems become an important mechanism for lane detection and warning systems to alert a driver about the road in localization of the vehicle [1]. In automotive electronic market, for lane detection problem, vision-based approaches has been designed and developed using different electronic hardware and software components including wireless sensor, camera module, Field-Programmable Gate Array (FPGA) based systems, GPU and digital signal processors (DSP) [13]. The software module consists on the top of real-time operating systems and hardware description programming language including Verilog, or VHDL. One of the most time critical task of vision based systems is to test system applications in real physical environment with wide variety of driving scenarios and validating the whole systems as per the automotive industry standards. For validating and testing the advanced driver assistance systems, there are some commercial tools available including Assist ADTF from Elektrobit, EB company [43]. In addition to the design and strict real-time requirements for advanced driver assistance systems applications based on electronic components and embedded platform, the complexity and characteristics of the implemented algorithms are two parameters that need to be taken into consideration choosing hardware and software component [13]. The development of vision-based automotive application, based on alone electronic and micro-controller is not a feasible solution approach [35] [13] and GPU based solution are attractive but has many other issues including power consumption. In this thesis project, image and video processing module is used from OpenCV library for road lane detection problems. In proposed lane detection methods, low-level image processing algorithms and methods are used to extract relevant information for lane detection problem by applying contrast analysis at pixel level intensity values. Furthermore, the work at hand presents different approaches for solving relevant partial problems in the domain of lane detection. The aim of the work is to apply contrast analysis based on low-level image processing methods to extract relevant lane model information from the grid of intensity values of pixel elements available in image frame. The approaches presented in this project work are based on contrast analysis of binary mask image frame extracted after applying range threshold. A set of points, available in an image frame, based lane feature models are used for detecting lanes on color image frame captured from video. For the performance measurement and evaluation, the proposed methods are tested on different systems setup, including Linux, Microsoft Windows, CodeBlocks, Visual Studio 2012 and Linux based Rasbian-Jessie operating systems running on Intel i3, AMD A8 APU, and embedded systems based (Raspberry Pi 2 Model B) ARM v7 processor respectively.
|
2 |
Lane Detection based on Contrast AnalysisKumar, Surinder 09 June 2016 (has links)
Computer vision and image processing systems are ubiquitous in automotive domain and manufacturing industry. Lane detection warning systems has been an elementary part of the modern automotive industry. Due to the recent progress in the computer vision and image processing methods, economical and flexible use of computer vision is now pervasive and computing with images is not just for the realm of the science, but also for the arts and social science and even for hobbyists. Image processing is a key technology in automotive industry, even now there is hardly a single manufacturing process that is thinkable without imaging. The applications of image processing and computer vision methods in embedded systems platform, is an ongoing research area since many years. OpenCV, an open-source computer vision library containing optimized algorithms and methods for designing and implementing applications based on video and image processing techniques. These method are organized in the form of modules for specific field including, user-graphic interface, machine learning, feature extraction etc [43]. Vision-based automotive application systems become an important mechanism for lane detection and warning systems to alert a driver about the road in localization of the vehicle [1]. In automotive electronic market, for lane detection problem, vision-based approaches has been designed and developed using different electronic hardware and software components including wireless sensor, camera module, Field-Programmable Gate Array (FPGA) based systems, GPU and digital signal processors (DSP) [13]. The software module consists on the top of real-time operating systems and hardware description programming language including Verilog, or VHDL. One of the most time critical task of vision based systems is to test system applications in real physical environment with wide variety of driving scenarios and validating the whole systems as per the automotive industry standards. For validating and testing the advanced driver assistance systems, there are some commercial tools available including Assist ADTF from Elektrobit, EB company [43]. In addition to the design and strict real-time requirements for advanced driver assistance systems applications based on electronic components and embedded platform, the complexity and characteristics of the implemented algorithms are two parameters that need to be taken into consideration choosing hardware and software component [13]. The development of vision-based automotive application, based on alone electronic and micro-controller is not a feasible solution approach [35] [13] and GPU based solution are attractive but has many other issues including power consumption. In this thesis project, image and video processing module is used from OpenCV library for road lane detection problems. In proposed lane detection methods, low-level image processing algorithms and methods are used to extract relevant information for lane detection problem by applying contrast analysis at pixel level intensity values. Furthermore, the work at hand presents different approaches for solving relevant partial problems in the domain of lane detection. The aim of the work is to apply contrast analysis based on low-level image processing methods to extract relevant lane model information from the grid of intensity values of pixel elements available in image frame. The approaches presented in this project work are based on contrast analysis of binary mask image frame extracted after applying range threshold. A set of points, available in an image frame, based lane feature models are used for detecting lanes on color image frame captured from video. For the performance measurement and evaluation, the proposed methods are tested on different systems setup, including Linux, Microsoft Windows, CodeBlocks, Visual Studio 2012 and Linux based Rasbian-Jessie operating systems running on Intel i3, AMD A8 APU, and embedded systems based (Raspberry Pi 2 Model B) ARM v7 processor respectively.
|
3 |
Entwicklung und Validierung methodischer Konzepte einer kamerabasierten Durchfahrtshöhenerkennung für NutzfahrzeugeHänert, Stephan 03 July 2020 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Konzeptionierung und Entwicklung eines neuartigen Fahrerassistenzsystems für Nutzfahrzeuge, welches die lichte Höhe von vor dem Fahrzeug befindlichen Hindernissen berechnet und über einen Abgleich mit der einstellbaren Fahrzeughöhe die Passierbarkeit bestimmt. Dabei werden die von einer Monokamera aufgenommenen Bildsequenzen genutzt, um durch indirekte und direkte Rekonstruktionsverfahren ein 3D-Abbild der Fahrumgebung zu erschaffen. Unter Hinzunahme einer Radodometrie-basierten Eigenbewegungsschätzung wird die erstellte 3D-Repräsentation skaliert und eine Prädiktion der longitudinalen und lateralen Fahrzeugbewegung ermittelt. Basierend auf dem vertikalen Höhenplan der Straßenoberfläche, welcher über die Aneinanderreihung mehrerer Ebenen modelliert wird, erfolgt die Klassifizierung des 3D-Raums in Fahruntergrund, Struktur und potentielle Hindernisse.
Die innerhalb des Fahrschlauchs liegenden Hindernisse werden hinsichtlich ihrer Entfernung und Höhe bewertet. Ein daraus abgeleitetes Warnkonzept dient der optisch-akustischen Signalisierung des Hindernisses im Kombiinstrument des Fahrzeugs. Erfolgt keine entsprechende Reaktion durch den Fahrer, so wird bei kritischen Hindernishöhen eine Notbremsung durchgeführt.
Die geschätzte Eigenbewegung und berechneten Hindernisparameter werden mithilfe von Referenzsensorik bewertet. Dabei kommt eine dGPS-gestützte Inertialplattform sowie ein terrestrischer und mobiler Laserscanner zum Einsatz. Im Rahmen der Arbeit werden verschiedene Umgebungssituationen und Hindernistypen im urbanen und ländlichen Raum untersucht und Aussagen zur Genauigkeit und Zuverlässigkeit des Verfahrens getroffen. Ein wesentlicher Einflussfaktor auf die Dichte und Genauigkeit der 3D-Rekonstruktion ist eine gleichmäßige Umgebungsbeleuchtung innerhalb der Bildsequenzaufnahme. Es wird in diesem Zusammenhang zwingend auf den Einsatz einer Automotive-tauglichen Kamera verwiesen. Die durch die Radodometrie bestimmte Eigenbewegung eignet sich im langsamen Geschwindigkeitsbereich zur Skalierung des 3D-Punktraums. Dieser wiederum sollte durch eine Kombination aus indirektem und direktem Punktrekonstruktionsverfahren erstellt werden. Der indirekte Anteil stützt dabei die Initialisierung des Verfahrens zum Start der Funktion und ermöglicht eine robuste Kameraschätzung. Das direkte Verfahren ermöglicht die Rekonstruktion einer hohen Anzahl an 3D-Punkten auf den Hindernisumrissen, welche zumeist die Unterkante beinhalten. Die Unterkante kann in einer Entfernung bis zu 20 m detektiert und verfolgt werden. Der größte Einflussfaktor auf die Genauigkeit der Berechnung der lichten Höhe von Hindernissen ist die Modellierung des Fahruntergrunds. Zur Reduktion von Ausreißern in der Höhenberechnung eignet sich die Stabilisierung des Verfahrens durch die Nutzung von zeitlich vorher zur Verfügung stehenden Berechnungen. Als weitere Maßnahme zur Stabilisierung wird zudem empfohlen die Hindernisausgabe an den Fahrer und den automatischen Notbremsassistenten mittels einer Hysterese zu stützen.
Das hier vorgestellte System eignet sich für Park- und Rangiervorgänge und ist als kostengünstiges Fahrerassistenzsystem interessant für Pkw mit Aufbauten und leichte Nutzfahrzeuge. / The present work deals with the conception and development of a novel advanced driver assistance system for commercial vehicles, which estimates the clearance height of obstacles in front of the vehicle and determines the passability by comparison with the adjustable vehicle height. The image sequences captured by a mono camera are used to create a 3D representation of the driving environment using indirect and direct reconstruction methods. The 3D representation is scaled and a prediction of the longitudinal and lateral movement of the vehicle is determined with the aid of a wheel odometry-based estimation of the vehicle's own movement. Based on the vertical elevation
plan of the road surface, which is modelled by attaching several surfaces together, the 3D space is classified into driving surface, structure and potential obstacles. The obstacles within the predicted driving tube are evaluated with regard to their distance and height. A warning concept derived from this serves to visually and acoustically signal the obstacle in the vehicle's instrument cluster. If the driver does not respond accordingly, emergency braking will be applied at critical obstacle heights. The estimated vehicle movement and calculated obstacle parameters are evaluated with the aid of reference sensors. A dGPS-supported inertial measurement unit and a terrestrial as well as a mobile laser scanner are used. Within the scope of the work, different environmental situations and obstacle types in urban and rural areas are investigated and statements on the accuracy and reliability of the implemented function are made.
A major factor influencing the density and accuracy of 3D reconstruction is uniform ambient lighting within the image sequence. In this context, the use of an automotive camera is mandatory. The inherent motion determined by wheel odometry is suitable for scaling the 3D point space in the slow speed range. The 3D representation however, should be created by a combination of indirect and direct point reconstruction methods. The indirect part supports the initialization phase of the function and enables a robust camera estimation. The direct method enables the reconstruction of a large number of 3D points on the obstacle outlines, which usually contain the lower edge. The lower edge can be detected and tracked up to 20 m away. The biggest factor influencing the accuracy of the calculation of the clearance height of obstacles is the modelling of the driving surface. To reduce outliers in the height calculation, the method can be stabilized by using calculations from older time steps. As a further stabilization measure, it is also recommended to support the obstacle output to the driver and the automatic emergency brake assistant by means of hysteresis. The system presented here is suitable for parking and maneuvering operations and is interesting as a cost-effective driver assistance system for cars with superstructures and light commercial vehicles.
|
Page generated in 0.0539 seconds